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Precision Medicine
Heterogeneity: different patients respond
differently to the same treatment.

◮ Positive treatment effects;
◮ Side effects.

One-size-fits-all → Precision Medicine

Advantages:
◮ Improve patient adherence;
◮ Reduce unnecessary treatments and side effects;
◮ Promote recovery;
◮ Enhance quality of care and quality of life;
◮ Optimize allocation of medical resources;
◮ Lower overall healthcare costs;
◮ . . . . . .
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Precision Medicine - Personalized Decision-Making

Goal: Find the optimal mapping from individual characteristics X ∈ X to treatments A ∈ A, i.e.
dopt(X), to maximize the expected clinical outcome E[Y∗(d(X))].

◮ X: demographics, clinical features, genetic information, environmental factors, etc.;
◮ A: drug choice, dosage, surgery, specific dietary or exercise recommendations, etc.;
◮ Y: biomarker levels, survival time, disease progression or remission status, quality of life scores, etc.

Applications:
◮ Disease management: Recommend the optimal drug

dosage based on patient characteristics to optimize

treatment efficacy;
◮ Smart health monitoring: Use wearable devices and

biosensors for personalized health management;
◮ Personalized medical intervention: Combine multimodal

data to predict disease risk and enable early intervention.
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Personalized Decision-Making - Beyond Precision Medicine

Computer Science: context-aware recommender systems that

improve accuracy by incorporating time, location, and social

context.

Finance: provide personalized investment advice and wealth

management plans based on consumption habits and risk

preferences.

Public Management: improve the overall effectiveness of

policies through personalized interventions targeting individuals

with high social connectivity.
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Traditional Methods
Q-learning (Qian and Murphy, 2011; Watkins and Dayan, 1992)

Define the Q-function: Q(x, a) := E[Y|X = x,A = a], and specify a model Q(X,A;β).

󰁥dopt(X) = argmax
a∈A

Q(X, a; 󰁥β),

where 󰁥β = argmin
β

1
n

󰁓n
i=1(Yi − Q(Xi,Ai;β))

2.

A-learning (Murphy, 2003; Robins, 2004)

Define the contrast function: C(X) = Q(X, 1)− Q(X, 0), then dopt(X) = I(C(X) 󰃍 0).

Doubly robust A-learning: Let ν(X) = E[Y|X] and π(X) = E[A|X], with corresponding

estimators 󰁥ν(X) and 󰁥π(X). Specify a model for the contrast function C(X;θ), then

󰁥θ = argmin
θ

1
n

n󰁛

i=1

{Yi − 󰁥ν(Xi)− [Ai − 󰁥π(Xi)]C(Xi;θ)}2.
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Traditional Methods

Direct-search Methds (Chu et al., 2023; Zhang et al., 2012)
Denote value function V(d(X)) := E[Y∗(d(X))], then dopt(X) = argmax

d(X)∈D
V(d(X)).

◮ IPW-based estimator: 󰁥VIPW(d(X)) = Pn

󰁫
I(A=d(X))
󰁥π(X,A) Y

󰁬
.

◮ AIPW-based estimator: 󰁥VAIPW(d(X)) = Pn

󰁫
I(A=d(X))
󰁥π(X,A) Y − I(A=d(X))−󰁥π(X,A)

󰁥π(X,A)
󰁥Q(X, d(X))

󰁬
, where

Q(X, d(X)) = Q(X, 1)I(d(X) = 1) + Q(X, 0)I(d(X) = 0).
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Key Challenges

Lack of theoretical guarantees for parameter estimation of optimal ITRs → valid inference

is hindered (Zhang et al., 2012).

Scarcity of labeled data → large amounts of unlabeled data remain underutilized (Liao et

al., 2010).

Curse of dimensionality → Imputation-based kernel methods are impractical for

multi-dimensional covariates. (Gunn et al., 2024).
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Our Contributions

Semi-supervised framework: Propose a doubly robust direct-search method that

leverages both labeled and unlabeled data to improve estimation efficiency and robustness.

Dimension reduction: Incorporate a projection-based technique to address

multi-dimensional covariates.

Theorical result: Establish an n−1/3 convergence rate for parameter estimation, along with

its nonstandard asymptotic distribution.

Inference: Develop a perturbation resampling method to enable valid statistical inference.
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Methodology

Notations (X,A, Y)

X ∈ X ⊆ Rp: p-dimensional covariates with bounded support X ;

A ∈ A = {0, 1}: the binary treatment indicator;

Y ∈ Y ⊆ R: the outcome variable, larger values are better.

Observations L ∪ U
L = {(Xi,Ai, Yi) : i = 1, 2, . . . , n}: n iid labeled observations;

U = {(Xi,Ai) : i = n + 1, n + 2, . . . , n + N}: N iid unlabeled observations.
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Methodology

Semi-supervised Assumptions

a. L ⊥ U ;

b. Observations in L and U potentially follow the same distribution;

c. n
N = ρn → ρ ∈ [0,∞) as n,N → ∞.

Identifiability Assumptions
Let Y∗(a) be the potential outcome.

a. SUTVA: Y = Y∗(1)A + Y∗(0)(1 − A);

b. Ignoreability: A ⊥ {Y∗(0), Y∗(1)} | X;

c. Positivity: 0 < P(A = a|X = x) < 1.
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Methodology

For any ITR d(X) : X → A, the potential outcome Y∗(d(X)) can be written by

Y∗(d(X)) = Y∗(1)d(X) + Y∗(0)(1 − d(X)).

The optimal ITR is defined as

dopt (X) = argmax
d∈D

E [Y∗{d(X)}] ,

where D is some decision class of interest. We will focus on the linear decision class

D = {dβ(X) = I(β′X 󰃍 0) : β ∈ B},

where B = {β : β ∈ Rp, 󰀂β󰀂 = 1}, due to its simple structure and good interpretability (Chu et

al., 2023; Fan et al., 2017; Li et al., 2025)..
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Methodology

Lemma 1

Denote the conditional average treatment effect (CATE) as D(X) = E(Y|X,A = 1)− E(Y|X,A = 0).

Under identification assumptions, we have

E[{Y∗(1)− Y∗(0)}dβ(X)] = E[D(X)dβ(X)].

From Lemma 1 and the definition of optimal ITR, we have

dopt
β = argmax

dβ∈D
E[Y∗(dβ(X))]dopt

β = argmax
dβ∈D

E[D(X)dβ(X)].

Define E[D(X)dβ(X)] as the value function and I (β′
0X 󰃍 0) the induced optimal ITR in D, where

β0 = argmax
β∈B

E[D(X)dβ(X)].
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Methodology
Combining the ideas of the direct-search method from Zhang et al. (2012) and robust A-learning
(Murphy, 2003), we can construct the consistent estimator of the value function as follows:

E[D(X)dβ(X)] = E[V(Z,θ)dβ(X)] := ∆(β,θ),

where Z = (X, Y,A) and V(Z,θ) = {Y−ν(X,θ)}{A−π(X)}
π(X){1−π(X)} :

satisfying E[V(Z,θ)|X] = D(X) (Fan et al., 2017);

π(X) = P(A = 1|X): the propensity score(PS) function;

ν(X,θ): a model parameterized by θ for ν(X) ( an arbitrary function of X ), assuming

ν(X) = µ0(X) = E(Y|X,A = 0) w.l.o.g.

Thus we can obtain the supervised estimator of the value function that

󰁥∆sup(β, 󰁥θ) =
1
n

n󰁛

i=1

V(Zi, 󰁥θ)I (β′Xi 󰃍 0) ,

and the optimal ITR parameter β0 that 󰁥βsup = argmax
β∈B

󰁥∆sup(β, 󰁥θ).
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Methodology

By the law of iterated expectations, we have ∆(β,θ) = E[m(β′X,θ)dβ(X)] for dβ(X) = I(β′X 󰃍 0),

where m(β′X,θ) = E[V(Z,θ)|β′X]. It can be estimated by

󰁥m(β′Xj,θ) =
n−1 󰁓n

i=1 Kh(β
′Xi − β′Xj)V(Zi,θ)

n−1
󰁓n

i=1 Kh(β′Xi − β′Xj)
, (1)

where Kh(u − v) = 1
h K

󰀃 u−v
h

󰀄
with K being some kernel function and h > 0 being the bandwidth.
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Methodology

Since ∆(β,θ) = λE[V(Z,θ)dβ(X)] + (1 − λ)E[m(β′X,θ)dβ(X)] for any weight λ ∈ [0, 1], we

construct the semi-supervised estimator of the value function that

󰁥∆λ(β, 󰁥θ) =
λ

n

n󰁛

i=1

V(Zi, 󰁥θ)I(β′Xi 󰃍 0) +
1 − λ

N

n+N󰁛

j=n+1

󰁥m(β′Xj, 󰁥θ)I(β′Xj 󰃍 0),

and β0 that 󰁥βλ = argmax
β∈B

󰁥∆λ(β, 󰁥θ) ∗.

Furthermore, we propose the pooled estimator of the value function that

󰁥∆pl(β, 󰁥θ) =
1

n + N

n+N󰁛

j=1

󰁥m(β′Xj, 󰁥θ)I (β′Xj 󰃍 0) ,

and β0 that 󰁥βpl = argmax
β∈B

󰁥∆pl(β, 󰁥θ).

∗Theoretical results establish the optimal weight λ = ρ2/(1 + ρ2), which we recommend for applications.
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Double Robustness

When π(X) is unknown, we develop a doubly robust estimating method for the class of

monotonic increasing index model D(X), which satisfing that D(X) 󰃍 0 for β′X 󰃍 0 and

D(X) < 0 for β′X < 0.

Denote that V(Z,θ,α) = {Y−ν(X,θ)}{A−π(X,α)}
π(X,α){1−π(X,α)} and m(β′X,θ,α) = E[V(Z,θ,α)|β′X], where

π(X,α) is a parametric working model such as a logistic regression model posited for π(X).
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Double Robustness

When π(X,α) is correctly specified, it is similar to the case discussed before.

When ν(X,θ) is correctly specified, we have

m(β′X,θ,α) = E
󰀗

AD(X){A − π(X,α)}
π(X,α){1 − π(X,α)}

󰀏󰀏󰀏󰀏β
′X

󰀘
= E

󰀗
D(X)

π(X)

π(X,α)

󰀏󰀏󰀏󰀏β
′X

󰀘
.

When D(X) is a monotonic increasing index model, for any positive function g(·), we have

dopt
β = argmax

dβ∈D
E[D(X)dβ(X)] = argmax

dβ∈D
E[D(X)g(X)dβ(X)].

Due to the positivity assumption, π(X)
π(X,α) is always a positive function, hence

dopt
β = argmax

dβ∈D
E[D(X)dβ(X)] = argmax

dβ∈D
E[m(β′X,θ,α)dβ(X)].

Xintong Li (THU) DRSS ITR December 17, 2025 19 / 40



Doubly Robust Estimators
DR supervised estimator

󰁥βDR
sup = argmax

β

󰀫
1
n

n󰁛

i=1

V(Zi, 󰁥θ, 󰁥α)I (β′Xi 󰃍 0)

󰀬
.

DR semi-supervised estimator

󰁥βDR
λ =argmax

β

󰀝
λ

n

n󰁛

i=1

Vi(Zi, 󰁥θ, 󰁥α)I(β′Xi 󰃍 0)

+
1 − λ

N

n+N󰁛

i=n+1

󰁥m(β′Xi, 󰁥θ, 󰁥α)I(β′Xi 󰃍 0)
󰀞
.

DR pooled estimator

󰁥βDR
pl = argmax

β

󰀫
1

n + N

n+N󰁛

i=1

󰁥m(β′Xi, 󰁥θ, 󰁥α)I (β′Xi 󰃍 0)

󰀬
.
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Asymptotic properties

Theorem 1 (Consistency)
Under some regularity conditions, when the propensity score is known, as n,N → ∞,
n
N = ρn → ρ ∈ [0,∞), λ ∈ [0, 1], we have:

a1. 󰁥βsup
p→ β0;

a2. 󰁥βpl
p→ β0;

a3. 󰁥βλ
p→ β0;

Note that double robust estimators 󰁥βDR
sup, 󰁥βDR

λ and 󰁥βDR
pl also have similar consistency.
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Asymptotic properties

Theorem 2 (Asymptotic distributions)
Under some regularity conditions, when the propensity score is known, as n,N → ∞,
n
N = ρn → ρ ∈ [0,∞), λ ∈ [0, 1], we have:

b1. n
1
3 (󰁥βsup − β0)

d→ argmax
t

Z(t), where Z(t) = G(t)− 1
2 t′Vt and −V is the second derivative matrix

of E[V(θ0)I(β′X 󰃍 0)] w.r.t. β at β0.

b2. n
1
3 (󰁥βλ − β0)

d→ argmax
t

Zλ(t), where Zλ(t) = Gλ(t)− 1
2 t′Vt.

b3. n
1
3 (󰁥βpl − β0)

d→ argmax
t

Zpl(t), where Zpl(t) = Gpl(t)− 1
2 t′Vt.

Here G(t), Gλ(t) and Gpl(t) are all mean-zero Gaussian processes with continuous sample paths

and covariance kernel function Cov(·, ·), [λ2 + (1 − λ)2ρ2]Cov(·, ·) and ( ρ
1+ρ )

2Cov(·, ·) respectively.

Similar properties hold for double robust estimators.
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Asymptotic properties

Denote the corvariance of 󰁥βbm, 󰁥βλ and 󰁥βpl are Σbm, Σλ and Σpl respectively. We can derive from

theorem 2 that Σλ is minimized when the weight λ = ρ2

1+ρ2 .

With this choice, a comparison of Σsup, Σλ, and Σpl reveals that

Σsup 󰃍 Σλ 󰃍 Σpl,

since 1 󰃍 ρ2

1+ρ2 󰃍 ρ2

(1+ρ)2 holds for all ρ ∈ [0,∞).
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Variance estimation

Propose a resampling method by perturbing the value function repeatedly to estimate the variance.

Take the procedure for 󰁥βλ as an example.

1. Generate iid perturbation ξi from Beta(
√

2 − 1, 1) for i = 1, . . . , n + N.

2. Perturb the value function. Let 󰁥θb = argmin
θ

1
n

󰁓n
i=1 ξi(1 − Ai)[Yi − ν(Xi,θ)]

2 and

󰁥mb(β′Xj,θ) =
󰁓n

i=1 ξiKh(β
′Xi−β′Xj)V(Zi,θ)󰁓n

i=1 ξiKh(β′Xi−β′Xj)
, then for linear decision dβ(X) = I(β′X 󰃍 0), we perturb

the value function by

󰁥∆b
λ

󰀓
β, 󰁥θb

󰀔
=

λ

n

n󰁛

i=1

ξiV
󰀓

Zi, 󰁥θb
󰀔

dβ(Xi) +
1 − λ

N

n+N󰁛

j=n+1

ξj󰁥mb
󰀓
β′Xj, 󰁥θb

󰀔
dβ(Xj).
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Variance estimation

3. Re-estimate β. We use the iterative algorithm to obtain the new estimator that

󰁥βb
λ = argmax

β∈B
󰁥∆b
λ

󰀓
β, 󰁥θb

󰀔
.

4. Estimate the variance. Repeat the above steps for B times and compute the empirical

variance matrix 󰁥Σλ of {󰁥βb
λ, b = 1, . . . ,B} to estimate the population variance Σλ.

The above variance estimation procedure ensures that n
1
3

󰀓
󰁥βλ − β0

󰀔
and n

1
3

󰀓
󰁥βb
λ − 󰁥βλ

󰀔
have the

same asymptotic distribution, so we denote the empirical variance of
󰁱
󰁥βb
λ : b = 1, . . . ,B

󰁲
as an

estimator of the population asymptotic variance.
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Simulation setting

Consider a class of monotonic index models with four different cases: Y = ν(X) + AD(X) + 󰂃, where

X = (X1,X2, . . . ,X6)
′ with (X1,X2,X3,X4) ∼ N4(0, I4), X5 ∼ Bernoulli(0.5), X6 ∼ Uniform(0, 1),

A ∼ Bernoulli{π(X)} and 󰂃 ∼ N
󰀃
0, 0.52󰀄.

(a) case 1, ν(X) = 1 + γ′
1X and D(X) = 2β′

0X;

(b) case 2, ν(X) = 1 + γ′
1X and D(X) = exp (0.5β′

0X)− 1;

(c) case 3, ν(X) = 1 + sin (γ′
1X) + 0.5 (γ′

2X)
2 and D(X) = 10β′

0X;

(d) case 4, ν(X) = 1 + X1X2 + 0.5X2
3 and D(X) = 10β′

0X.

(c) case 5, ν(X) = 1 + sin (γ′
1X) + 0.5 (γ′

2X)
2 and D(X) = 2 (β′

0X)
3;

(d) case 6, ν(X) = 1 + X1X2 + 0.5X2
3 and D(X) = 2 (β′

0X)
3.

We set β0 = (1,−1, 2, 1, 2, 1)′, γ1 = (1,−1, 1, 1,−1, 1)′ and γ2 = (1, 0,−1, 0, 1,−1)′.

The optimal treatment regime is given by dopt(X) = I (β′
0X 󰃍 0).
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Simulation setting

We employ the Gaussian kernel with a bandwidth of hn = 0.5n−1/3 across all the cases.

We conduct 1000 simulation runs for each case, with each run consisting of 200 resamplings

for variance estimation.

The optimization in the proposed methods is done by the optim function in R with the default

method ’Nelder-Mead’ for searching the maximizer.

When the propensity score is known, we set π(X) = 0.5. When the propensity score is

unknown, we utilize the logistic regression model to estimate it. The true model is

π(X) = s(−0.5 + X2
1 + X2

2) with s(x) = 1
1+e−x under the misspecified setting.
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Table: Results under case 1 with known propensity score

Method N Statistics 󰁥β1 󰁥β2 󰁥β3 󰁥β4 󰁥β5 󰁥β6

sup Bias 0.000 0.013 - 0.009 - 0.001 - 0.006 - 0.004
SE 0.051 0.049 0.047 0.049 0.061 0.115
SD 0.048 0.046 0.047 0.049 0.060 0.111

CP(%) 97.5 96.4 97.1 97.1 96.8 92.7
SS 200 Bias 0.005 0.021 - 0.005 0.005 - 0.002 0.007

SE 0.040 0.034 0.034 0.040 0.036 0.037
SD 0.035 0.032 0.032 0.035 0.034 0.037

CP(%) 97.9 94.3 97.4 97.8 98.8 99.6
Eff 1.644 1.808 1.886 1.512 2.896 9.744

500 Bias 0.004 0.016 - 0.006 0.006 - 0.006 0.010
SE 0.028 0.024 0.029 0.028 0.033 0.037
SD 0.029 0.026 0.029 0.029 0.032 0.037

CP(%) 97.5 95.8 96.7 98.2 99.0 97.7
Eff 3.237 3.498 2.618 3.086 3.440 9.429

pl 200 Bias 0.004 0.017 - 0.005 0.005 - 0.006 0.013
SE 0.020 0.019 0.023 0.021 0.024 0.037
SD 0.024 0.023 0.027 0.024 0.028 0.039

CP(%) 98.9 95.0 96.8 99.2 99.6 97.6
Eff 6.252 5.013 4.226 5.477 6.435 9.192

500 Bias 0.003 0.014 - 0.004 0.005 - 0.007 0.012
SE 0.015 0.013 0.019 0.015 0.018 0.033
SD 0.019 0.018 0.023 0.019 0.023 0.036

CP(%) 99.2 94.8 95.5 99.2 99.5 95.4
Eff 11.543 8.900 6.244 9.878 10.831 11.369

Xintong Li (THU) DRSS ITR December 17, 2025 30 / 40



AIDS Clinical Trials Group Protocol 175 (ACTG 175)

The ACTG 175 contains 2139 observed patients.

Our study focuses on patients randomly assigned to two treatments: zidovudine (coded A=0)

and other therapies (coded A=1).

The response variable Y is the CD4 T cell count at 96 ± 5 weeks, which value is missing for

797 patients.

11 covariates are considered including four continuous variables, age, weight, CD4 T cell

count at baseline and CD8 T cell count at baseline, and seven binary variables, haemophilia,

homosexual activity, history of intravenous drug use, race, gender, antiretroviral history, and

symptomatic status. We standardized the continuous variables before estimation.
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Real Data Analysis: ACTG 175

Table: Estimated parameters of optimal ITR for ACTG 175 study

Mehods sup SS pl
Predictors Est SD Est SD Est SD
intercept 0.024 0.032 0.026 0.049 0.138 0.104

hemo -0.839 0.359 -0.821 0.069 -0.809 0.077
homo -0.211 0.284 -0.237 0.074 -0.207 0.037
drugs -0.171 0.290 -0.096 0.103 -0.173 0.037
race 0.270 0.217 0.327 0.077 0.285 0.076

gender -0.024 0.322 -0.022 0.084 -0.010 0.056
str2 0.189 0.184 0.208 0.059 0.213 0.033

symptom -0.190 0.206 0.087 0.097 -0.220 0.031
age 0.098 0.115 0.110 0.051 0.092 0.041

weight 0.060 0.107 0.068 0.046 0.048 0.044
cd40 -0.219 0.132 -0.251 0.060 -0.229 0.020
cd80 0.125 0.107 0.145 0.053 0.124 0.030
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CI of estimated paramters for ACTG 175 study
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Real Data Analysis: ACTG 175

Table: Treatment recommendation for ACTG 175 study

ITR sup SS pl
ZDV+ddI 457 545 621
ZDV+ddC 589 501 425

The SS and pl estimators suggest the ZDV+ddI regime for a larger number of patients.

In medical research, treatment with ZDV+ddI has demonstrated a more pronounced efficacy

in improving patient outcomes and slowing the progression of disease in individuals with

HIV/AIDS compared to the treatment with ZDV+ddC (Darbyshire et al., 1996; Hammer et al.,

1996; Mauss et al., 1996)
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Future work

Consider the dimension of covariates p increasing alongside the sample size n.

Consider the cases involving censoring.

Consider the heterogeneity between the L and U .
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Thank you for listening.

More details can be referred to “Li, X., Peng, M., and Zhou, Y. (2025). Doubly Robust Estimation of

Individuall Tratment Regime in a Semi-supervised Framework. Statistica Sinca (Accepted).
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