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Precision Medicine

@ Heterogeneity: different patients respond

differently to the same treatment. Eiiment Medicine

» Positive treatment effects: Gne Tsatment Fits All

» Side effects. /' m [

@ One-size-fits-all — Precision Medicine )@—> ’6‘ [

No effect
Therapy

@ Advantages: h
» Improve patient adherence; Future Medicine
» Reduce unnecessary treatments and side effects; More Personalized Diagnostics
» Promote recovery;
very o 75~ e
» Enhance quality of care and quality of life; =0 m,.,,)
» Optimize allocation of medical resources; e 5.,,: p —

» Lower overall healthcare costs;
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Precision Medicine - Personalized Decision-Making

@ Goal: Find the optimal mapping from individual characteristics X € X to treatments A € A, i.e.
d°r'(X), to maximize the expected clinical outcome E[Y*(d(X))].
» X: demographics, clinical features, genetic information, environmental factors, etc.;
» A: drug choice, dosage, surgery, specific dietary or exercise recommendations, etc.;
» Y: biomarker levels, survival time, disease progression or remission status, quality of life scores, etc.

@ Applications:
PERSONALIZED

» Disease management: Recommend the optimal drug MEDICINE Qﬁ
dosage based on patient characteristics to optimize = Vel
treatment efficacy;

» Smart health monitoring: Use wearable devices and
biosensors for personalized health management; J U

» Personalized medical intervention: Combine multimodal
data to predict disease risk and enable early intervention.
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Personalized Decision-Making - Beyond Precision Medicine

@ Computer Science: context-aware recommender systems that
improve accuracy by incorporating time, location, and social
context.

2l e
)

1l @: K%N_;@ o @ Finance: provide personalized investment advice and wealth

j@M{EST T@_ management plans based on consumption habits and risk

. Ql‘:f@ @)* preferences.

@ Public Management: improve the overall effectiveness of -
policies through personalized interventions targeting individuals o
with high social connectivity. :
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Traditional Methods
@ Q-learning (Qian and Murphy, 2011; Watkins and Dayan, 1992)
Define the Q-function: Q(x, a) := E[Y|X = x,A = 4], and specify a model Q(X, 4; 3).

4" (X) = arg max Q(X, a; B)y
acA

where ,@ = arg min % S (Y — 0(X;,A;; B))%.
B

@ A-learning (Murphy, 2003; Robins, 2004)
Define the contrast function: C(X) = 0(X, 1) — 0(X,0), then ¢7/(X) = I(C(X) > 0).

Doubly robust A-learning: Let v(X) = E[Y|X] and 7(X) = E[A|X], with corresponding
estimators 7(X) and 7(X). Specify a model for the contrast function C(X; ), then

0= argemin % Z{Yi — (X)) — [A — 7T(X)]C(X;;0))°.
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Traditional Methods

@ Direct-search Methds (Chu et al., 2023; Zhang et al., 2012)
Denote value function V(d(X)) := E[Y*(d(X))], then d°’'(X) = arg max V(d(X)).
d(X)eD
» IPW-based estimator: Vipw (d(X)) = P, [% Y]

» AIPW-based estimator: Vapw(d(X)) = P, [’("("(X)))Y TR O(X, d(X))] , Where

0(X,d(X)) = 0(X, DI(d(X) = 1) + O(X, 0)I(d(X) = 0).
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Key Challenges

@ Lack of theoretical guarantees for parameter estimation of optimal ITRs — valid inference
is hindered (Zhang et al., 2012).

@ Scarcity of labeled data — large amounts of unlabeled data remain underutilized (Liao et
al., 2010).

@ Curse of dimensionality — Imputation-based kernel methods are impractical for
multi-dimensional covariates. (Gunn et al., 2024).
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Our Contributions

@ Semi-supervised framework: Propose a doubly robust direct-search method that
leverages both labeled and unlabeled data to improve estimation efficiency and robustness.

@ Dimension reduction: Incorporate a projection-based technique to address
multi-dimensional covariates.

@ Theorical result: Establish an n~!/? convergence rate for parameter estimation, along with
its nonstandard asymptotic distribution.

@ Inference: Develop a perturbation resampling method to enable valid statistical inference.
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Methodology

Notations (X,A4,7Y)

X € X C RP: p-dimensional covariates with bounded support X’;
A € A={0,1}: the binary treatment indicator;

Y € Y C R: the outcome variable, larger values are better.

Observations £ U U
L={X;,A;,Y;):i=1,2,...,n}: niid labeled observations;
U={X,A):i=n+1,n+2,....,n+ N}: Niid unlabeled observations.
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Methodology

Semi-supervised Assumptions
a. L 1U;
b. Observations in £ and U potentially follow the same distribution;
C. % =pn—p€l0,00)asnN— oco.
Identifiability Assumptions
Let Y*(a) be the potential outcome.
a. SUTVA: Y = Y*(1)A + Y*(0)(1 — A);
b. Ignoreability: A L {Y*(0),Y*(1)} | X;
c. Positivity: 0 < P(A =alX =x) < 1.
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Methodology

For any ITR d(X) : X — A, the potential outcome Y*(d(X)) can be written by
YH(d(X)) = Y*(1)d(X) + Y*(0)(1 — d(X)).
The optimal ITR is defined as
d (X) = argmax £ [Y'{d(X)}],
where D is some decision class of interest. We will focus on the linear decision class
D ={dsg(X) =1(3'X>0): € B},

where B={3: 3 € R?,||3|| = 1}, due to its simple structure and good interpretability (Chu et
al., 2023; Fan et al., 2017; Li et al., 2025)..
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Methodology

Lemma 1

Denote the conditional average treatment effect (CATE) as D(X) = E(Y|X,A = 1) — E(Y|X,A = 0).
Under identification assumptions, we have

E[{Y*(1) = Y*(0)}ds(X)] = E[D(X)d3(X)]-

From Lemma 1 and the definition of optimal ITR, we have

d?,pt = arg max E[Y* (dg(X))]a'gpt = arg max E[D(X)dg(X)].
dg€D dg€D

Define E[D(X)ds(X)] as the value function and I (8;X > 0) the induced optimal ITR in D, where
Bo = arg max E[D(X)dg(X)].
BeB
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Methodology

Combining the ideas of the direct-search method from Zhang et al. (2012) and robust A-learning

(Murphy, 2003), we can construct the consistent estimator of the value function as follows:
E[D(X)ds(X)] = E[V(Z,0)ds(X)] := A(B,6),
Y—v(X,0)}{A—7(X)}.
where Z = (X, Y,A) and V(Z,0) = { ﬂ(<x>'{])i{ﬂ<x)}( s
@ satisfying E[V(Z, 6)|X] = D(X) (Fan et al., 2017);
@ 7(X) = P(A = 1X): the propensity score(PS) function;
@ (X, 0): a model parameterized by 6 for v(X) ( an arbitrary function of X ), assuming
v(X) = po(X) = E(Y|X,A =0) w.l.og.
Thus we can obtain the supervised estimator of the value function that

~ ~ 1 <& ~
Asup(B,0) = — > V(Z:,0)1 (8% > 0),
i=1

and the optimal ITR parameter 3, that Bsup = arg max ﬁsup(ﬁ, 67).
BeB

Xintong Li (THU) DRSS ITR December 17, 2025

15/40



Methodology

By the law of iterated expectations, we have A(3,0) = Em(8'X, 0)dg(X)] for dg(X) = I(3'X > 0),
where m(3'X, 0) = E[V(Z, 6)|3'X]. It can be estimated by

~ onT Y K (B'X — B'X)V(Z,,0)
m(B'X;,0) = S KX — B'X)) )

where Kj,(u — v) = 1K (“;*) with K being some kernel function and > 0 being the bandwidth.

(1)
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Methodology

Since A(B,60) = AE[V(Z,0)ds(X)] + (1 — \)E[m(B'X, 8)dg(X)] for any weight A € [0, 1], we
construct the semi-supervised estimator of the value function that

N N A n N 1— 2\ n+N R N
A)\(ﬁa 0) = ; Z V(Zia G)I(B/Xl 2 0) + T Z m(IB/Xj’ O)I(IBIXJ 2 0)7
i=1 Jj=n+1

and 3, that 3, = arg max A, (3, 0) *.
BeB
Furthermore, we propose the pooled estimator of the value function that

. . 1 N .
Apl(ﬁa 0) = l’l— m(ﬁ/xpa)l (B/Xj 2 0) )

Jj=1

and By that By = arg max Ay(3, 0).
BeB

*Theoretical results establish the optimal weight A = p?/(1 + p?), which we recommend for applications.
Xintong Li (THU) DRSS ITR December 17, 2025
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Double Robustness

@ When 7(X) is unknown, we develop a doubly robust estimating method for the class of
monotonic increasing index model D(X), which satisfing that D(X) > 0 for 3’X > 0 and
D(X) < 0for X < 0.

@ Denote that V(Z, 0, o) = P840} and m(8X, 6, ) = E[V(Z,0, )| 3'X], where
(X, ) is a parametric working model such as a logistic regression model posited for 7(X).
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Double Robustness

@ When 7(X, ) is correctly specified, it is similar to the case discussed before.

@ When v(X, 6) is correctly specified, we have

AD(X){A — (X, )}
(X, a){l — n(X, )}

™(X)
(X, )

m(3'X,0,a) =E

ox| — £ |p(x)

g/x} .
When D(X) is a monotonic increasing index model, for any positive function g(-), we have

d%pt = argmax E[D(X)dg(X)] = arg max E[D(X)g(X)ds(X)].
dg€D dg€D

7(X)

Due to the positivity assumption, X0

is always a positive function, hence

dz)pt = arg max E[D(X)dg(X)] = arg max E[m(B'X, 0, a)dg(X)].
ds€D dg€D

Xintong Li (THU) DRSS ITR December 17, 2025
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Doubly Robust Estimators

@ DR supervised estimator

~ 1 <& ~
Bon = arg max {; Z V(Z:,0,a) (B'X; > 0)} .
B

i=1

@ DR semi-supervised estimator

~ A — ~
g ma {3 V(2.0.8)(8% > 0

i=1

1-A

@ DR pooled estimator

R 1 n+NA .
ﬁR = arg;nax {n—i-—N Zm(,@’xi’ 9, a)l (B'X; > 0)} .

i=1
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Asymptotic properties

Theorem 1 (Consistency)

Under some regularity conditions, when the propensity score is known, as n, N — oo,
¥ =pa— p€[0,00), X € [0, 1], we have:

al. Bsup ﬁ> /30;
az. ﬁpl L ,801
a3. BA L Bo;

Note that double robust estimators B2%, X% and 3% also have similar consistency.
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Asymptotic properties

Theorem 2 (Asymptotic distributions)

Under some regularity conditions, when the propensity score is known, as n, N — oo,

¥ = Pn— p€[0,00), A €[0,1], we have:

bi. n3 (Bm,, — o) 2 arg max Z(t), where Z(t) = G(t) — 3¢Vt and —V is the second derivative matrix
of E[V(60)I(B'X > O)t] w.r.t. 3 at By.

b2. n3(Bx — Bo) % argmax Z, (1), where Zy (1) = Gx(1) — 3¢/Vz.
1
b3. n3 (B — Bo) % arg max Z,(1), where Z,(t) = Gi(t) — L¢'vr.
t
Here G(r), G (r) and G, () are all mean-zero Gaussian processes with continuous sample paths

and covariance kernel function Cov(, ), [\* + (1 — X)?p*|Cov(-,-) and (;%;)*Cov(-, -) respectively.

v

Similar properties hold for double robust estimators.
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Asymptotic properties

Denote the corvariance of By, Bx and B, are Sy, £, and ¥, respectively. We can derive from
theorem 2 that X is minimized when the weight A = 1—%2.

With this choice, a comparison of 3¢, 3, and Xy reveals that

Esup =X\ 2= Epl,

since 1 > lfpz > ﬁ holds for all p € [0, o0).
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Variance estimation

Propose a resampling method by perturbing the value function repeatedly to estimate the variance.
Take the procedure for 3, as an example.

1. Generate iid perturbation & from Beta(v/2 —1,1)fori=1,...,n+ N.
2. Perturb the value function. Let 6> = arg min % S &1 =AY — v(X;, 0)) and
0
b (B'X;,0) = S SiKn(B'Xi—B'X)V(Z,0)
9

SR XX then for linear decision dg(X) = 1(8'X > 0), we perturb
the value function by

R (8.67) =2 Zgl (2:.6") da( +§jvff”(ﬁx 6") da(X;).

Jj=n+1
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Variance estimation

3. Re-estimate 8. We use the iterative algorithm to obtain the new estimator that

,@lj\ = ar%é%axﬁg <,6',§b> .

4. Estimate the variance. Repeat the above steps for B times and compute the empirical
variance matrix £, of {3%,b = 1,..., B} to estimate the population variance X,.

The above variance estimation procedure ensures that n’ (ﬁ,\ - ﬁo) and n? <B§ - BA) have the

same asymptotic distribution, so we denote the empirical variance of {B§ :bh=1,... ,B} as an
estimator of the population asymptotic variance.
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Simulation setting

Consider a class of monotonic index models with four different cases: ¥ = v(X) + AD(X) + ¢, where

X = (Xl,Xz, - ,Xﬁ)/ Wlth (Xl,X27X3,X4) ~ N4(0,I4), X5 ~ Bernoulli(O.S), Xﬁ ~ Um'form(O, 1),

A ~ Bernoulli{m(X)} and € ~ N (0,0.5%).

case 1, v(X) = 1 + vy;X and D(X) = 26¢X;

case 2, v(X

1 + /X and D(X) = exp (0.58;X) — I;
case 3, v(X

(a) X)
(b) X)
(©) X)
(d) case 4, v(X)
(©) X)
(d) X)

1 + sin (v{X) + 0.5 (v+X)” and D(X) = 108X

1 + XX, +0.5X3 and D(X) = 108}X.

case 5, v(X

1 + sin (v{X) + 0.5 (v+X)” and D(X) = 2 (3)X)’;

case 6, v(X

1+ XX, +0.5X3 and D(X) = 2 (8)X)".

We set ﬁo = (1771727 1727 1)/1 = (17717 17 17717 1)’ and Y2 = (1707 71707 17 -

The optimal treatment regime is given by d°®(X) = I (3(X > 0).

Xintong Li (THU) DRSS ITR
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Simulation setting

@ We employ the Gaussian kernel with a bandwidth of 4, = 0.52~!/3 across all the cases.

@ We conduct 1000 simulation runs for each case, with each run consisting of 200 resamplings
for variance estimation.

@ The optimization in the proposed methods is done by the optim function in R with the default
method ’Nelder-Mead’ for searching the maximizer.

@ When the propensity score is known, we set 7(X) = 0.5. When the propensity score is
unknown, we utilize the logistic regression model to estimate it. The true model is

7(X) = s(—0.5 + X? + X3) with s(x) = under the misspecified setting.

1+ =

Xintong Li (THU) DRSS ITR December 17, 2025 29/40



Table: Results under case 1 with known propensity score

Method N  Statistics B 5y Bs B Bs Be

sup Bias 0.000 0.013 -0.009 -0.001 -0.006 -0.004
SE 0.051 0.049 0.047 0.049 0.061 0.115

SD 0.048 0.046 0.047 0.049 0.060 0.111

CP(%) 975 964  97.1 97.1 96.8 92.7

SS 200 Bias 0.005 0.021 -0.005 0.005 -0.002 0.007
SE 0.040 0.034 0.034 0.040 0.036 0.037

SD 0.035 0.032 0.032 0.035 0.034 0.037

CP(%) 97.9 94.3 97.4 97.8 98.8 99.6

Eff 1.644 1.808 1.886 1.512 2.896 9.744

500 Bias 0.004 0.016 -0.006 0.006 -0.006 0.010

SE 0.028 0.024 0.029 0.028 0.033  0.037

SD 0.029 0.026 0.029 0.029 0.032 0.037

CP(%) 97.5 95.8 96.7 98.2 99.0 97.7

Eff 3.237 3.498 2618 3.086 3.440 9.429

pl 200 Bias 0.004 0.017 -0.005 0.005 -0.006 0.013
SE 0.020 0.019 0.023  0.021 0.024  0.037

SD 0.024 0.023 0.027 0.024 0.028  0.039

CP(%) 98.9 95.0 96.8 99.2 99.6 97.6

Eff 6.252 5.013 4.226 5.477 6.435 9.192

500 Bias 0.003 0.014 -0.004 0.005 -0.007 0.012

SE 0.015 0.013 0.019 0.015 0.018 0.033

SD 0.019 0.018 0.023 0.019 0.023 0.036

CP(%) 99.2 94.8 95.5 99.2 99.5 95.4
Eff 11.543 8900 6.244 9.878 10.831 11.369

DRSS ITR

December 17, 2025

30/40



AIDS Clinical Trials Group Protocol 175 (ACTG 175)

@ The ACTG 175 contains 2139 observed patients.

@ Our study focuses on patients randomly assigned to two treatments: zidovudine (coded A=0)
and other therapies (coded A=1).

@ The response variable Y is the CD4 T cell count at 96 + 5 weeks, which value is missing for
797 patients.

@ 11 covariates are considered including four continuous variables, age, weight, CD4 T cell
count at baseline and CD8 T cell count at baseline, and seven binary variables, haemophilia,
homosexual activity, history of intravenous drug use, race, gender, antiretroviral history, and
symptomatic status. We standardized the continuous variables before estimation.
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Real Data Analysis: ACTG 175

Table: Estimated parameters of optimal ITR for ACTG 175 study

Mehods sup SS pl

Predictors Est SD Est SD Est SD
intercept  0.024 0.032 0.026 0.049 0.138 0.104
hemo -0.839 0.359 -0.821 0.069 -0.809 0.077
homo -0.211 0.284 -0.237 0.074 -0.207 0.037
drugs -0.171 0.290 -0.096 0.103 -0.173 0.037
race 0.270 0.217 0.327 0.077 0.285 0.076
gender -0.024 0.322 -0.022 0.084 -0.010 0.056
str2 0.189 0.184 0.208 0.059 0.213 0.033
symptom -0.190 0.206 0.087 0.097 -0.220 0.031
age 0.098 0.115 0.110 0.051 0.092 0.041
weight 0.060 0.107 0.068 0.046 0.048 0.044
cd40 -0.219 0.132 -0.251 0.060 -0.229 0.020
cd8o0 0.125 0.107 0.145 0.053 0.124 0.030
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Cl of estimated paramters for ACTG 175 study

Method

sup

SS

CI

95% CI

90% CI

95% CI

90% CI

95% CI

90% CI

intercept
hemo
homo
drugs
race
gender
str2
symptom
age
weight
cd40

cd80

(-0.038, 0.097)
(-0.949, 0.323)
(-0.658, 0.422)
(-0.647, 0.449)
(-0.217, 0.626)
(-0.650, 0.505)
(-0.175, 0.528)
(-0.529, 0.284)
(-0.147, 0.321)
(-0.164, 0.270)
(-0.420, 0.082)

(-0.135, 0.313)

(-0.025, 0.075)
(-0.925, 0.101)
(-0.586, 0.333)
(-0.605, 0.348)
(-0.146, 0.564)
(-0.589, 0.474)
(-0.126, 0.483)
(-0.450, 0.217)
(-0.117, 0.280)
(-0.122, 0.208)
(-0.367, 0.066)

(-0.084, 0.251)

(-0.057, 0.158)
(-0.854, -0.590)
(-0.338, -0.049)

(-0.290, 0.103)

(0.194, 0.508)

(-0.284, 0.082)

(0.141, 0.378)

(-0.368, 0.022)

(0.055, 0.263)

(0.011, 0.208)
(-0.383, -0.146)

(0.072, 0.290)

(-0.031, 0.135)
(-0.839, -0.631)
(-0.324, -0.082)

(-0.283, 0.058)

(0.218, 0.463)

(-0.236, 0.049)

(0.160, 0.354)
(-0.330, -0.032)

(0.087, 0.253)

(0.032, 0.187)
(-0.364, -0.158)

(0.102, 0.276)

(-0.177, 0.204)
(-0.859, -0.611)
(-0.271, -0.126)
(-0.219, -0.082)

(0.240, 0.495)

(-0.146, 0.065)

(0.176, 0.304)
(-0.249, -0.122)

(0.072, 0.209)

(0.027, 0.175)
(-0.284, -0.193)

(0.089, 0.206)

(-0.127, 0.197)
(-0.852, -0.650)
(-0.257, -0.133)
(-0.218, -0.099)

(0.245, 0.476)

(-0.119, 0.058)

(0.184, 0.281)
(-0.242, -0.141)

(0.074, 0.195)

(0.028, 0.150)

(-0.273, -0.204)

(0.096, 0.193)
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Real Data Analysis: ACTG 175

Table: Treatment recommendation for ACTG 175 study

ITR sup SS pl
ZDV+ddl 457 545 621
ZDV+ddC 589 501 425

@ The SS and pl estimators suggest the ZDV+ddI regime for a larger number of patients.

@ In medical research, treatment with ZDV+ddl has demonstrated a more pronounced efficacy
in improving patient outcomes and slowing the progression of disease in individuals with
HIV/AIDS compared to the treatment with ZDV+ddC (Darbyshire et al., 1996; Hammer et al.,
1996; Mauss et al., 1996)
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Future work

@ Consider the dimension of covariates p increasing alongside the sample size n.
@ Consider the cases involving censoring.

@ Consider the heterogeneity between the £ and i/.
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Thank you for listening.

More details can be referred to “Li, X., Peng, M., and Zhou, Y. (2025). Doubly Robust Estimation of
Individuall Tratment Regime in a Semi-supervised Framework. Statistica Sinca (Accepted).
doi:10.5705/ss.202025.0168"
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