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Motivation

Global models

3 Great interpretability and
computation simplicity

8 Poor fitting performances

Local models

3 Better fitting performances and
model flexibility

8 Lack of interpretability
and overfitting
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Motivation
Global models

3 Great interpretability and
computation simplicity

8 Poor fitting performances

Local models

3 Better fitting performances and
model flexibility

8 Lack of interpretability
and overfitting

As an intermediate, a segmented regression model, where EpY |Xq is homogeneous on several
segmented regions, may combine some benefits of the two types of models.
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Trees and ReLU Networks as Segmented Models
Regression tree

§ Recursively fit a two-region linear model
§ Univariate splitting boundary

Shallow ReLU network: fpxq “
řN

l“1 al ¨ σpxTβlq

§ Linear combination of two-region linear
models.

§ Can be reparametrized into a segmented
model.
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Trees and ReLU Networks as Segmented Models
Regression tree ReLU neural network: fpxq “

řN
l“1 al ¨ σpxTβlq

§ Trees and ReLU networks can be regarded as segmented linear models, if not grow too deep.
§ In this perspective, a comprehensive study of the segmented models may improve our

understanding of these methods.
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Segmented Linear Model

Consider a class of segmented regression models, where there are L splitting hyperplanes
tΓ

plq
0 : zTγl “ 0uLl“1, which partition the whole space of Z into K disjoint regions tRkpγqu

K
k“1 :

Y “

K
ÿ

k“1

XTβk1 tZ P Rkpγqu ` ε, (1)

§ Z “ pZ1, ¨ ¨ ¨ , ZdqT determines the regions and can share common variables with X.
§ Epε|X,Zq “ 0, so that E tY |X,Z P Rkpγqu “ XTβk.

Challenges in computation and inference:
§ The non-convexity introduced by the region indicators brings obstacles to optimization;
§ The estimator for γ is not asymptotic normal. So its statistical inference is not routine.
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Existing Studies on Segmented Linear Models
1 Threshold regression (Tong, 1990,Hansen, 1996)

univariate boundary and two regression regions

EpY |Xq “ XTβ ` XTδ1pZ ą rq

2 Multiple change points regression (Bai and Perron, 1998, Li and Ling, 2012):
time index boundaries and multiple regions.

EpY |Xq “

m`1
ÿ

j“1

XTβj1pTj´1 ă t ď Tjq

3 Two regime regression (Lee et al., 2021, Yu and Fan, 2021):
multivariate boundary and two regions.

EpY |Xq “ XTβ ` XTδ1pZTγ ą 0q

Most studies about statistical inference on segmented regression are still quite restrictive.
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Goal of This Study

§ Extend the existing segmented regression to a more general class

§ Asymptotic results under weakly dependent data

§ Valid inference methods for the boundary coefficient

§ Choose the optimal number of segmented regions (model selection)

§ Efficient computational algorithm

§ Application to model the meteorological effects on the PM2.5
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Model Setup
§ In general, suppose there are L splitting hyperplanes tΓ

plq
0 : zTγl “ 0uLl“1 in Rd, then there will

be K “
řmin pL,dq

i“0

`

L
i

˘

segmented regions since each combination of signs of tzTγlu
L
l“1

determines a region. When d ą L, then K “ 2L.
§ For simplicity of exposition, we henceforth confine L “ 2, where K “ 4 if d ě 2.

Methods and theories for general cases can be extended.
§ Suppose the sample tYt,Xt,Ztu

T
t“1 is generated by

Yt “

4
ÿ

k“1

XT

t βk01 tZt P Rkpγ0qu ` εt. (2)

§ εt is the residual satisfying Epεt|Xt,Ztq “ 0 with finite second moment.
§ The regime indicator 1 tZt P Rkpγ0qu can be explicitly expressed as 1k pZT

t γ10,Z
T
t γ20q, where

t1kpu, vqu4k“1 are defined as 11pu, vq “ 1pu ą 0, v ą 0q, 12pu, vq “ 1pu ď 0, v ą 0q,
13pu, vq “ 1pu ď 0, v ď 0q and 14pu, vq “ 1pu ą 0, v ď 0q.

§ Since the signs of ZT
1 γ10 and ZT

2 γ20 determine the regimes in Model (2), the first element of
γ10 and γ20 are normalized as 1 in order to be identifiable.
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Estimation

§ With the data sample tWt “ pYt,Xt,Z1,t,Z2,tquTt“1, in view of Epεt|Xt,Ztq “ 0, we define
the following least squares criterion function

MT pθq “
1

T

T
ÿ

t“1

#

Yt ´

4
ÿ

k“1

XT

t βk1kpZT

1,tγ1,Z
T

2,tγ2q

+2

“:
1

T

T
ÿ

t“1

mpWt,θq, (3)

and the parameter space is Θ “ Γ1 ˆ Γ2 ˆ B4, where Γi is a compact set in Rdi and the first
element of any γ P Γi is normalized as 1 for each i “ 1, 2, and B is a compact set in Rp.

§ Since MT pθq is strictly convex in β and piece-wise constant in γ with at most T jumps, it has
a unique minimizer pβ “ ppβT

1 , ¨ ¨ ¨ , pβT
4 qT for β, but a set of minimizers for γ, which is denoted

as pG, such that a LSE pθ “ ppγT, pβTqT satisfies

MT ppθq “ inf
θPΘ

MT pθq for any pγ P pG. (4)
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Identification and consistency
Let W “ pY,X,Z1,Z2q follow the stationary distribution P0 of Wt, and qi “ ZT

i γi0 for i “ 1 and
2 to indicate whether Z is located on the true hyperplane Hi0 or not.

Assumption 1 (temporal dependence) (i) The time series tWtutě1 is stationary and α-mixing with
the mixing coefficient αptq ď cρt for finite positive constants c and ρ P p0, 1q. (ii) Epεt|Ft´1q “ 0,
where Ft´1 is a filtration generated by tpXi,Z1i,Z2i, εi´1q : i ď tu.

Assumption 2 (identification) For i P t1, 2u and k, h P t1, ¨ ¨ ¨ , 4u, (i) Z1 and Z2 are not
identically distributed. (ii) There exists a j P t1, ¨ ¨ ¨ , diu such that Pp|qi| ď ϵ|Z´j,iq ą 0 almost
surely for Z´j,i and for any ϵ ą 0, where Z´j,i is the vector after excluding Zi’s jth element;
without loss of generality, assume j “ 1. (iii) For any γ P Γ1 ˆ Γ2 and
P tZ P Rkpγ0q X Rhpγqu ą 0, the smallest eigenvalue of E tXXT|Z P Rkpγ0q X Rhpγqu ě λ0 for
some constant λ0 ą 0. (iv) For pk, hq P Spiq, }βk0 ´ βh0} ą c0 for some constant c0 ą 0.

Assumption 3 (i) EpY 4q ă 8, Ep}X}4q ă 8 and maxi“1,2 Ep}Zi}q ă 8. (ii) For each i “ 1 and
2, PpZT

i γ1 ă 0 ă ZT
i γ2q ď c1}γ1 ´ γ2} if γ1,γ2, P N pγi0; δ0q, for some constants δ0, c1 ą 0.
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Identification and consistency
The identification of θ0 under the least squared criterion is ensured in the following proposition.

Proposition 1 (Identification)

Under Assumptions 1 and 2, EtmpW ,θqu ą EtmpW ,θ0qu for any θ P Θ and θ ‰ θ0.

The following theorem shows that any LSE estimators pθ “ ppγT, pβTqT defined in (4) are consistent
to θ. It is worth noting that though there exist infinitely many solutions pγ which are collected in
the convex set pG, the consistency of each pγ can be guaranteed, which implies that the solution set
pG is a local neighborhood of γ0 with a shrinking radius.

Theorem 1 (Consistency)

Under Assumptions 1–3, let pθ “ ppγT, pβTqT for any pγ P pG, , then pθ
p
ÝÑ θ0 as T Ñ 8.

With the estimated splitting hyperplanes, each datum can be classified into one of the four
estimated regimes tRkppγqu4k“1.

Corollary 1
Under the conditions of Theorem 1, PtZ P Rkpγ0q△Rkppγqu Ñ 0 as T Ñ 8 for all k P t1, ¨ ¨ ¨ , 4u.
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Convergence rate
Assumption 4 (i) For i “ 1 and 2, there exist constants δ1, c2 ą 0 such that if ϵ P p0, δ1q then
Pp|qi| ă ϵ|Z´1,iq ě c2ϵ almost surely. (ii) For i “ 1 and 2, there exists a neighborhood
Ni “ N pγi0; δ2q of γi0 for some δ2 ą 0, such that infγPNi

Ep}X}|ZT
i γ “ 0q ą 0 almost surely.

(iii) PpZT
1 γ1 ă 0 ă ZT

1 γ2,Z
T
2 γ3 ă 0 ă ZT

2 γ4q ď c3}γ1 ´ γ2}}γ3 ´ γ4} for some constant c3 ą 0 if
γ1,γ2 P N1 and γ3,γ4 P N2. (iv) For some constant r ą 8, supγPNi

Ep}X}r|ZT
i γ “ 0q ă 8 and

supγPNi
Epεr|ZT

i γ “ 0q ă 8 almost surely.

Under the above assumptions we can obtain

Mpθq ´ Mpθ0q Á }β0 ´ β}2 ` }γ0 ´ γ}

and two maximal inequalities regarding the empirical processes supθPΘ |MT pθq ´ Mpθq|, which lead
to the following convergence rate.

Theorem 2 (Convergence rate)

Under Assumptions 1–4, }pβ ´ β0} “ OppT´ 1
2 q and }pγ ´ γ0} “ OppT´1q for any pγ P pG.
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Asymptotic Distributions
We define the following quantities to present the asymptotic distributions of pβ and pγ.

§ For each k P t1, ¨ ¨ ¨ , 4u, let

Bk “ E tXXT1pZ P Rkpγ0qu and Σk “ B´1
k E

␣

XXTε21pZ P Rkpγ0q
(

B´1
k .

§ Let qi,t “ ZT
i,tγi0 for i “ 1 and 2, and s

pkq

i P t´1, 1u be the sign of qi,t for Zt P Rkpγ0q.
§ If two adjacent regions Rkpγ0q and Rhpγ0q are divided by Hi, we denote pk, hq P Spiq and let

ξ
pk,hq
t “

`

δT

kh,0XtX
T

t δkh,0 ` 2XT

t δkh,0εt
˘

1 tZt P Rkpγ0q Y Rhpγ0qu (5)

where δkh,0 “ βk0 ´ βh0.
§ Suppose pqi,Z´1,i, ξ

pk,hqq follows the stationary distribution of pqi,t,Z´1,i,t, ξ
pk,hq
t q. We denote

Fqi|Z´1,i
pq|Z´1,iq and Fξpk,hq|qi,Z´1,i

pξ|qi,Z´1,iq as the conditional distributions of qi on Z´1,i

and ξpk,hq on pqi,Z´1,iq, respectively, and the corresponding conditional densities are
fqi|Z´1,i

pq|Z´1,iq and fξpk,hq|qi,Z´1,i
pξ|qi,Z´1,iq, respectively.
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Asymptotic Distributions
The asymptotic distribution of pγ needs the following stochastic process

Dpvq “
ÿ

i“1,2

ÿ

k,hPSpiq

8
ÿ

ℓ“1

ξ
pk,hq

ℓ 1
!

s
pkq

i

´

J
pk,hq

i,ℓ ` pZ
pk,hq

i,ℓ qTv´1,i

¯

ď 0 ă s
pkq

i J
pk,hq

i,ℓ

)

, (6)

for v “ pvT
1 ,v

T
2 qT P Rd1`d2 , where tpξ

pk,hq

ℓ ,Z
pk,hq

i,ℓ qu8
ℓ“1 are independent copies of pξ̄pk,hq,Z´1,iq with

ξ̄pk,hq „ Fξpk,hq|qi,Z´1,i
pξ|0,Z´1,iq, and J

pk,hq

i,ℓ “ J pk,hq

i,ℓ {fqi|Z´1,i
p0|Z

pk,hq

i,ℓ q with
J pk,hq

i,ℓ “ s
pkq

i

řℓ
n“1 E

pk,hq

i,n and tE pk,hq

i,n u8
n“1 are independent unit exponential variables which are

independent of tpξ
pk,hq

ℓ ,Z
pk,hq

i,ℓ qu8
ℓ“1. Moreover, tpξ

pk,hq

ℓ ,Z
pk,hq

i,ℓ , J
pk,hq

i,ℓ qu8
ℓ“1 are mutually independent

with respect to i “ 1, 2 and pk, hq P Spiq.

Remark: Dpvq is a sum of multivariate compound Poisson processes and only depends on pairs of
adjacent regions.

Intuitively, this is because Dpvq largely relies on those points lying in a local neighbourhood of the
true splitting hyperplanes, whose |qi,t| are on the order of OpT´1q, which are rare events with their
occurrences asymptotically governed by a Poisson process.
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Asymptotic Distributions

§ Let GD “ tvm : Dpvmq ď Dpvq if v ‰ vmu be the set of minimizers for Dpvq. Since Dpvq is
a piece-wise constant random function, there are infinitely many elements in GD.

§ We use the centroid of GD as the representative. For any set A of d-dimensional vectors, the
centroid of A is CpAq “

ş

vPA vdv{
ş

vPA dv.
§ Let γc

D “ CpGDq and pγc “ CppGq, where pG is the set for LS estimators for γ.

Assumption 5 (i) For i “ 1 and 2, there exist constants δ3, c4 ą 0 such that
Pp|qi,t| ď δ3, |qi,t`j| ď δ3q ď c4 tPp|qi,t| ď δ3qu

2 uniformly for t ě 1 and j ě 1; (ii) For each
z´1,i P Z´1,i, the conditional density fqi|Z´1,i

pq|z´1,iq is continuous at q “ 0 and
c4 ď fqi|Z´1,i

p0|z´1,iq ď c5 for some constants c4, c5 ą 0; (iii) For each ξ P R and z´1,i P Z´1,i, the
conditional density fξpk,hq|qi,Z´1,i

pξ|qi, z´1,iq is continuous at qi “ 0 and fξpk,hq|qi,Z´1,i
pξ|0, z´1,iq ď c6

for a constant c6 ą 0; (iv) Z´1,i is a compact subset of Rdi´1.
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Asymptotic Distributions

Theorem 3 (Asymptotic distribution)

Under Assumptions 1-5, we have (i)
?
T ppβk ´ βk0q

d
ÝÑ N p0,Σkq for k “ 1, ¨ ¨ ¨ , 4 and

T ppγc ´ γ0q
d
ÝÑ γc

D; (ii) t
?
T ppβk ´ βk0qu4k“1 and tT ppγc

j ´ γj0qu2j“1 are asymptotically independent.

§ The limiting process Dpvq is derived by the asymptotics of the point process induced by
tpξ

pk,hq
t ,Z´1,i,t, T qi,tquTt“1, using large sample theories for extreme values.

§ To accommodate discontinuities of the processes, we employed the epi-convergence in
distribution (Knight, 1999), which is more general than the classic uniform convergence in
distribution.

§ The asymptotic independence of T ppγc
1 ´ γ10q and T ppγc

2 ´ γ20q was shown by establishing a
thinning theorem of the Poisson process for the α-mixing sequences.
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Computation
§ Recall that the objective function is non-convex:

MT pθq “

T
ÿ

t“1

#

Yt ´

4
ÿ

k“1

XT

t βk1kpZT

t γ1,Z
T

t γ2q

+2

.

§ For the univariate threshold model Y “ XTβ ` XTδIpZ ą rq ` ε, the LSE of the r̂ is often
obtained via grid search, which is not suitable for multivariate boundaries.

§ Since MT pθq involves an indicator function, it is natural to consider transforming the original
problem into a mixed integer quadratic programming (MIQP) problem.

§ The general form of MIQP:
min xTHx ` cTx

s.t. Ax ď b

x P Zp ˆ Rn´p

§ Key idea of forming the MIQP: use reparametrization and introduce some linear inequalities
to guarantee the MIQP is equivalent to the original problem.
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Mixed integer quadratic programming

The original LS problem (4) is reformulated to an MIQP problem as follows.
Let g “ tgj,t : j “ 1, 2, t “ 1, ¨ ¨ ¨ , T u, I “ tIk,t : k “ 1, ¨ ¨ ¨ , 4, t “ 1, ¨ ¨ ¨ , T u and
ℓ “ tℓk,i,t : k “ 1, ¨ ¨ ¨ , 4, i “ 1, ¨ ¨ ¨ , p, t “ 1, ¨ ¨ ¨ , T u. Solve the following problem:

min
β,γ,g,I,ℓ

1

T

T
ÿ

t“1

˜

Yt ´

4
ÿ

k“1

p
ÿ

i“1

Xt,iℓk,i,t

¸2

(7)

subject to

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

βk P B, γj P Γj, gj,t P t0, 1u, Ik,t P t0, 1u, Li ď βk,i ď Ui,

pgj,t ´ 1qpMj,t ` ϵq ă ZT

j,tγj ď gj,tMj,t, Ik,tLi ď ℓk,i,t ď Ik,tUi,

Lip1 ´ Ik,tq ď βk,i ´ ℓk,i,t ď Uip1 ´ Ik,tq,

Ik,t ď s
pkq

j gj,t ` p1 ´ s
pkq

j q{2, Ik,t ě

2
ÿ

j“1

!

s
pkq

j gj,t ` p1 ´ s
pkq

j q{2
)

´ 1,

(8)

for k “ 1, ¨ ¨ ¨ , 4, j “ 1, 2, i “ 1, ¨ ¨ ¨ , p and t “ 1, ¨ ¨ ¨ , T.
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Mixed integer quadratic programming

The following theorem shows that the formulated MIQP is equivalent to the original LS problem.

Theorem 4
For any small ϵ ą 0 in (8), let θ̃ “ pγ̃T, β̃TqT be a solution of the MIQP defined with (7) and (8),
then MT ppθq “ MT pθ̃q where pθ is a solution in (4).

§ It can be efficiently solved via modern optimization software, such as GUROBI and CPLEX.
§ We also proposed a blockwise coordinate descent version for large-dimension scenarios.
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Inference for the Boundary Coefficient

§ Since the inference for β0 is standard, we focus on the inference for the boundary coefficient γ0.
§ The asymptotic distribution of T ppγc ´ γ0q is nonpivotal and hard to simulate.
§ A natural idea for is to employ the bootstrap. However, the nonparametric, the residual, and

the wild bootstrap are all failed to consistently approximate the distribution of T ppγ ´ γ0q.

Reason: The bootstrap sampling distribution pPT must approximate the true distribution P0

in the neighbourhood of the boundary hyperplanes. However, P0 is continuous around the
true boundaries so that γ0 is identifiable, while conditional on the original data, the bootstrap
distribution pPT is discrete under the aforementioned bootstraps.

§ Our remedy is to first smooth the data, then resampling from the smoothed distribution.
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Smoothed regression bootstrap
§ Suppose that W „ P0 follows the segmented model with heteroscedastic errors:

Y “

4
ÿ

k“1

XTβ01tZ P Rkpγ0qu ` σpX,Zqe, (9)

where e KK pX,Zq with E peq “ 0,E pe2q “ 1, and σ2pX,Zq is the conditional variance.
§ Let K1p¨q and K2p¨q be a p-dimensional and a pd1 ` d2q-dimensional kernel functions,

respectively. Let Gipuq “
şu

´8
Kipuqdu for i “ 1, 2. Our kernel estimator for F0px, zq is

rF0px, zq “
1

T

T
ÿ

t“1

G1

ˆ

Xt ´ x

h1

˙

G2

ˆ

Zt ´ z

h2

˙

,

§ For any given px, zq, the local linear estimator rσ2px, zq “ pα, which is defined by

ppα, pηq “ argmin
pα,ηq

T
ÿ

t“1

␣

pε2t ´ α ´ ppXt ´ xqT, pZt ´ zqTqη
(2

K1

ˆ

Xt ´ x

b1

˙

K2

ˆ

Zt ´ z

b2

˙

.

§ Let pet “ pεt{σ̃pXt,Ztq and pGpeq be the empirical distribution of the centered tpetu
T
t“1. 19 / 34



Smoothed regression bootstrap

We need the following conditions on the underlying stationary distribution and its density functions,
the kernel functions, and the smoothing bandwidths to facilitate the Bootstrap procedure.

Assumption 6 (i) The stationary distribution F0 of pXt,Ztq has a compact support and is
absolute continuous with density f0px, zq which is bounded and infx,z f0px, zq ą 0.
(ii) The conditional variance function σ2

0px, zq is bounded and infx,z σ
2
0px, zq ą 0.

(iii) The kernels K1p¨q and K2p¨q are symmetric density functions which are Lipshitz continuous and
have bounded supports. The smoothing bandwidths satisfy hi, bi Ñ 0 for i “ 1 and 2, and
T plog T q´1hp

1h
d1`d2
2 Ñ 8 and T plog T q´1bp1b

d1`d2
2 Ñ 8 as T Ñ 8.

Under Assumptions 1 and 6, it can be shown that supx,z } rF0px, zq ´ F0px, zq}
p
ÝÑ 0, and

supx,z }rσ2px, zq ´ σ2
0px, zq}

p
ÝÑ 0, following the uniform convergence results of kernel density and

regression estimators for the α-mixing sequences.
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Smoothed Bootstrap: Procedure
Step 1: First, generate tpX˚

t ,Z
˚
t quTt“1 independently from rF px, zq and te˚

t uTt“1 independently from
pGpeq, respectively. Then, generate Y ˚

t “
ř4

k“1 pX˚
t q

T
pβk1tZ˚

t P Rkppγcqu ` rσpX˚
t ,Z

˚
t qe˚

t to
obtain bootstrap resample tpY ˚

t ,X
˚
t ,Z

˚
t quTt“1.

Step 2: Compute the LSEs based on tpY ˚
t ,X

˚
t ,Z

˚
t quTt“1, where pβ˚ is the LSE for β0 and tpγ˚

i uNi“1 are
the LSEs for γ0 for a sufficiently large N . Let pγ˚c “

řN
i“1 pγ

˚
i {N .

Step 3: Repeat the above two steps B times for a large positive integer B to obtain tpγ˚c
b uBb“1, and use

the empirical distribution of
!

T ppγ˚c
b ´ pγcq,

?
T ppβ˚

b ´ pβq

)B

b“1
as an estimate of the distribution

of tT ppγc ´ γ0q ,
?
T ppβ ´ β0qu.

Denote the distribution of tT ppγc ´ γ0q ,
?
T ppβ ´ β0qu as LT and the empirical distribution of

!

T ppγ˚c
b ´ pγcq,

?
T ppβ˚

b ´ pβq

)B

b“1
as LT,B.

Theorem 5
Suppose that Assumptions 1-6 hold. Then ρ pLT,B,LT q

p
ÝÑ 0 as B, T Ñ 8, for any metric ρ that

metrizes weak convergence of distributions.
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Degenerated Models
(A): four-regime

H1

H2

R1
p`,`q

R2
p´,`q

R3
p´,´q

R4
p`,´q

(B): three-regime (a.1)

H2 H1

R1
p`,`q

R2
p´,`q

R3
p´,´q

(C): three-regime (a.2)

H1

H2

R1
p`,`q

R2
p´,`q

R3
p´,´qYp`,´q

(D): two-regime (b.1)

H1

R1
p`q

R2
p´q

(E): two-regime (b.2)

H1

H2

R1
p`,`q

R2
p´,`qYp´,´qYp`,´q

(F): global model

R1

Figure: Segmented models with no more than four regimes. The signs of pzT
1γ1, z

T
2γ2q for each region are

indicated below the region names.

Question: How will LSE with L “ 2, K “ 4 behave in the degenerated cases with L ď 2, K ă 4?
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Properties under Degenerated Models
Let pB “ tpβku4k“1 and pG “ tpγju

2
j“1 be the LS estimators for the regression and the boundary

coefficients, respectively. For a set H “ thju
J
j“1 and a vector v, let dpv,Hq “ minj }v ´ hj}2.

Theorem 6
For degenerated models with K0 regimes and L0 splitting hyperplanes, where 1 ď K0 ă 4 and
0 ď L0 ď 2 under Assumption 1 and Assumptions S2-S4 in the SM, which adapt Assumptions 3–4
to the degenerate model settings, then for each βk0 with 1 ď k ď K0, dpβk0, pBq “ Opp1{

?
T q. If

L0 “ 1, then dpγ0, pGq “ Opp1{T q. If L0 “ 2, then dpγi0, pGq “ Opp1{T q for each i “ 1 and 2.
Moreover, for any of the degenerated models with K0 ă 4 regimes, there exists an index set
Qk Ă t1, ¨ ¨ ¨ , 4u such that P tZ P Rkpγ0q △ YiPQk

Rippγqu “ Op1{T q for each 1 ď k ď K0.

§ The estimated boundaries and the regression coefficients obtained under (4) of the
four-regime model are consistent to the true parameters of degenerated models.

§ Each true region asymptotically equals to a estimated region or a union of some estimated
regions.
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Backward elimination fitting

Starting from the estimated four-regime model, we recursively find the best pairs of adjacent regimes
to be merged, under a criterion that the merging leads to the minimal increase in the fitting errors.

For K “ 4, 3, 2, recursively define

DpKq

T pi, hq “ min
βPB

T
ÿ

t“1

rYt ´ XT

t β1tZt P pRpKq

i Y pRpKq

h us2 ´

T
ÿ

t“1

rYt ´
ÿ

k“i,h

XT

t
pβpKq

k 1tZt P pRpKq

k us2

to be the increment in the SSR after merging pRpKq

i and pRpKq

h . Let AK be the pair of indices for the
adjacent segments of t pRpKq

k u. We merge the segments pRpKq

î
and pRpKq

ĥ
if

ppi,phq “ argmin
pi,hqPAK

DpKq

T pi, hq, (10)

followed by labelling the merged region and the remaining regions as t pRpK´1q

k uK´1
k“1 , and we denote

the estimated regression coefficients to these K ´ 1 regimes by tpβpK´1q

k uK´1
k“1 .
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Model selection

After obtaining the ST pKq for K “ 2, 3, 4, we select the number of segments pK as

pK “ argmin
1ďKď4

tlogp
ST pKq

T
q `

λT

T
Ku (11)

and output the estimated regimes and regression coefficients accordingly. The following theorem
shows that the above selection algorithm has the model selection consistency.

Theorem 7
Under the assumptions of Theorem 6, and λT Ñ 8, λT {T Ñ 0 as T Ñ 8, then pK selected in (11)
satisfies Pp pK “ K0q Ñ 1 as T Ñ 8. In addition, Pt pRpxKq

k △Rkpγ0qu “ Op1{T q and
}pβpxKq

k ´ βk0} “ Opp1{
?
T q for any k P t1, ¨ ¨ ¨ , K0u.
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Simulation: Four-Regime Model
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Simulation: model selection
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Simulation: smoothed regression bootstrap
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Case Study

Goal: To explore the relationship between meterological variables and PM2.5.

§ Response: PM2.5;
Covariates: temperature (TEMP), dew point temperature (DEWP), pressure (PRES),
cumulative wind speed (IWS), wind direction (NE, NW, SE, SW, CV), boundary layer height
(BLH) and the one-hour lagged PM2.5 term (Lag).

§ Time range: January 1, 2019 to December 31, 2019.
§ Testing data: 11-th day to the 20-th day of each month;

Training data: the rest samples of each month.
§ Comparison models:

1. the global linear regression (GLR);
2. the two-regime model (2-REG) of Lee et al. (2021), Yu and Fan (2021);
3. the four-regime model (4-REG);
4. the linear regression tree (LRT) of Breiman et al. (1984);
5. the multivariate adaptive regression splines (MARS) of Friedman (1991)
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Case Study: Model Comparision

Average rank of RMSE. The 4-REG achieved the best out-of-sample performances.
GLR 2-REG 4-REG LRT MARS

Train 5 3.75 2.5 1.75 2
Test 3 2 1 4.75 4.25
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Case Study: Splitting Boundaries
(a) Spring

§ The DEWP and the wind-related variables were the most important variables in determining the
estimated boundaries.

§ The splitting boundaries are determined empirically by multivariate covariates, while the boundary
variable has to be user-specified in classic threshold regression.
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Case Study: Regime Splitting in Spring

The data-driven regime-splitting results had clear atmosphere physics interpretation:
Regime 1: high DEWP & CV ùñ pollution state; Regime 2: lower DEWP & reduced CV ùñ transitional
state; Regime 3: lowest DEWP & mainly northerly wind ùñ cleaning state
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Summary
The segmented regression model is an intermediate between the global and local model, but has
been underexplored. In this work, we contribute to this area in several aspects:

§ propose a more flexible class of segmented models that extends threshold/change point
regression;

§ the asymptotics under weakly dependent data;
§ smoothed regression bootstrap for inference;
§ model selection with consistency guarantee;
§ MIQP-based computation method.

Future interests:
§ nonlinear splitting boundaries;
§ high-dimensional segmented regressions;
§ extension to tree-based regressions;
§ . . .

Thank you!
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