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Motivation

Global models

N

v Great interpretability and
computation simplicity

X Poor fitting performances

Local models

v Better fitting performances and

model flexibility

X Lack of interpretability

and overfitting
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segmented regions, may combine some benefits of the two types of models.

As an intermediate, a segmented regression model, where E(Y|X) is homogeneous on several
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Trees and ReLU Networks as Segmented Models
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Regression tree Shallow ReLU network: f(z) =", a; - o(z"6))

max{x”B; ,0}

max{x” By ,0}

» Recursively fit a two-region linear model

» Univariate splitting boundary

» Linear combination of two-region linear

models.

» Can be reparametrized into a segmented

model.
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Trees and ReLU Networks as Segmented Models
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Regression tree ReLU neural network: f(x) = Zfil a,-o(x"6)

max{x” B, , 0}

max{x” By ,0}

» Trees and ReLU networks can be regarded as segmented linear models, if not grow too deep.

» In this perspective, a comprehensive study of the segmented models may improve our

understanding of these methods.
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Segmented Linear Model

Consider a class of segmented regression models, where there are L splitting hyperplanes

{Fél) : 2", = 0}, which partition the whole space of Z into K disjoint regions {Rk('y)}szl ;

K
Y =Y X "Bl {Z € Ry()} +e, (1)
k=1
» Z = (Zy, - ,Zy)" determines the regions and can share common variables with X.

» E(e|X,Z) =0, so that E{Y| X, Z € Ry(v)} = X" Bs.

Challenges in computation and inference:

» The non-convexity introduced by the region indicators brings obstacles to optimization;

» The estimator for v is not asymptotic normal. So its statistical inference is not routine.
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Existing Studies on Segmented Linear Models
® Threshold regression (Tong, 1990,Hansen, 1996)

univariate boundary and two regression regions

E(Y|X)=X"8+ X"61(Z>r)

® Multiple change points regression (Bai and Perron, 1998, Li and Ling, 2012):

time index boundaries and multiple regions.

m—+1

E(Y|X) = ZXTB] <t <T))

® Two regime regression (Lee et al., 2021, Yu and Fan, 2021):

multivariate boundary and two regions.

E(Y|X) = X"8+ X 861(Z"~ > 0)

[ Most studies about statistical inference on segmented regression are still quite restrictive.
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Goal of This Study

v

Extend the existing segmented regression to a more general class

v

Asymptotic results under weakly dependent data

v

Valid inference methods for the boundary coefficient

v

Choose the optimal number of segmented regions (model selection)

v

Efficient computational algorithm

v

Application to model the meteorological effects on the PMs 5
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Model Setup

| 2

In general, suppose there are L splitting hyperplanes {T\" : 27, = 0}~ , in RY, then there will
be K =" (L) (%) segmented regions since each combination of signs of {2}/,
determines a region. When d > L, then K = 2%

For simplicity of exposition, we henceforth confine L = 2, where K =4 if d > 2

Methods and theories for general cases can be extended.

Suppose the sample {Y;, X;, Z;}I_, is generated by

4
Y = > X[ Brol {Z € Ri(v)} + & (2)
k=1
g, is the residual satisfying E(e;| X}, Z;) = 0 with finite second moment.
The regime indicator 1 {Z; € Ry(70)} can be explicitly expressed as 1 (Z; 10, Z; 20), Where
{11 (u,v)}{_, are defined as 1 (u,v) = 1(u > 0,v > 0), To(u,v) = L(u < 0,v > 0),
13(u,v) = 1(u < 0,v < 0) and T4(u,v) = 1(u > 0,v < 0).
Since the signs of Z] 1y and ZJ 7,0 determine the regimes in Model (2), the first element of

~10 and 7y are normalized as 1 in order to be identifiable.
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Estimation

> With the data sample {W, = (Y}, X}, Z1,, Z2,)}_,, in view of E(g| X;, Z;) = 0, we define

the following least squares criterion function

k=1

2
1 X 4 T
] I DL C
t=1 t=1

and the parameter space is © = I'; x I'y x B*, where I'; is a compact set in R% and the first

element of any v € I'; is normalized as 1 for each ¢ = 1,2, and B is a compact set in RP”.

» Since My (8) is strictly convex in 3 and piece-wise constant in < with at most 7" jumps, it has
a unique minimizer 3 = (BlT, e ,QI)T for 3, but a set of minimizers for =y, which is denoted
as QA such that a LSE @ = (’?T,,éT)T satisfies

M7(0) = énef) Mz (6) for any J€G. (4)
€
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|dentification and consistency

Let W = (Y, X, Z,, Z,) follow the stationary distribution Py of W}, and ¢; = Z ;o for i = 1 and

2 to indicate whether Z is located on the true hyperplane H;y or not.

Assumption 1 (temporal dependence) (i) The time series {W;},>1 is stationary and a-mixing with
the mixing coefficient o(t) < cp® for finite positive constants ¢ and p € (0,1). (ii) E(g/|F;—1) =0,
where F,_1 is a filtration generated by {(X;, Z1;, Zoi, ;1) : i < L}.

Assumption 2 (identification) Forie {1,2} and k,h e {1,---,4}, (i) Z, and Z; are not
identically distributed. (ii) There exists a j € {1,--- ,d;} such that P(|¢;| < €|Z_;;) > 0 almost
surely for Z_;; and for any e > 0, where Z_; ; is the vector after excluding Z;’s jth element;
without loss of generality, assume j = 1. (iii) For any v € I'y x I'y and
P{Z € Rx(vo) » Ru(7y)} > 0, the smallest eigenvalue of E{X X™|Z € Ry(vo) N Rn()} = Ao for

Bro — Bro| > co for some constant ¢y > 0.

some constant Ao > 0. (iv) For (k,h) € S(i),

Assumption 3 (i) E(Y*) < o0, E(| X |*) < 0 and max;_1 2 E(| Z;|) < o0. (ii) For eachi =1 and
2, P(Zv1 <0< Zy) < 1|y — 72| if v1,72, € N(7i0; o), for some constants g, c; > 0.
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|dentification and consistency

The identification of 8, under the least squared criterion is ensured in the following proposition.
Proposition 1 (ldentification)
Under Assumptions 1 and 2, E{m(W,0)} > E{m(W,8,)} for any 8 € © and 0 # 0.

The following theorem shows that any LSE estimators 6 = (*?T,BT)T defined in (4) are consistent
to 0. It is worth noting that though there exist infinitely many solutions 4 which are collected in

the convex set QA the consistency of each 4 can be guaranteed, which implies that the solution set

G is a local neighborhood of 4, with a shrinking radius.

Theorem 1 (Consistency)

Under Assumptions 1-3, let 0 — (QT,,@T)T for any 4 € G. . then N 0y as T — 0.

With the estimated splitting hyperplanes, each datum can be classified into one of the four
estimated regimes { Ri(9)}i_;-

Corollary 1

Under the conditions of Theorem 1, P{Z € Ry(vo) A Rx(¥)} = 0asT — oo forall ke {1,--- ,4}.
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Convergence rate

Assumption 4 (i) Fori =1 and 2, there exist constants d1,co > 0 such that if e € (0,01) then
P(|q;| < €|Z_1;) = co€ almost surely. (ii) For i = 1 and 2, there exists a neighborhood
Ni = N(7i0;02) of vio for some o5 > 0, such that inf cp, E(| X || Z] v = 0) > 0 almost surely.
(i) P(Z1y1 <0 < ZTv2, Z3v3 <0 < Z3v4) < csl|v1 — Ylll[vs — 74l for some constant c3 > 0 if
Y1,72 € N1 and 3,74 € Na. (iv) For some constant r > 8, sup.,. . E(| X ||"|Zf~ = 0) < o and
SUp.en; E(€7|Zy = 0) < 0 almost surely.

Under the above assumptions we can obtain

M(6) — M(6o) 2 [Bo — BI* + |70 — ]

and two maximal inequalities regarding the empirical processes supg.g |[Mr(0) — M(8)|, which lead

to the following convergence rate.

Theorem 2 (Convergence rate)

| 1

Under Assumptions 1 = 0,(T~2) and |y — | = O,(T™") for any y € G.
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Asymptotic Distributions

We define the following quantities to present the asymptotic distributions of ,@ and ~.
» For each ke {1,---,4}, let

By = E{XX"1(Z € Ry(v0)} and £ = B;'E {X X"*1(Z € Ry(0)} B; "

> Let qiv = Z;vio fori =1 and 2, and sgk) € {—1, 1} be the sign of ¢;; for Z; € Ri(7vo).

2

» If two adjacent regions Ry (vo) and Ry(o) are divided by H;, we denote (k,h) € S(i) and let
&5 = (85 0 X X[ o + 2X[ 8n0:) 1 {Z: € Ri(v0) U Riu(0)} (5)

where 5kh,o = Bro — Bro-

> Suppose (¢i, Z_1,, %) follows the stationary distribution of (¢;¢, Z 1., 1)y, We denote
Foiz_.,(q|Z_1;) and Fg(k,h)‘qi,Z_l,i(quu Z_, ;) as the conditional distributions of ¢; on Z_ ;

and ¢®M) on (g;, Z_,;), respectively, and the corresponding conditional densities are

Janzor, (01 Z_1;) and feom g,z o (Eldi, Z-1,), respectively.
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Asymptotic Distributions

The asymptotic distribution of 4 needs the following stochastic process

D= 3V N (s (A 4 2] <0< P @)

i=1,2

for v = (vF, v})" € RU+42 where {(£F" Z )}e , are independent copies of (€®M) Z ;) with

g(k "~ Fﬁ(’“h)|q Z_4 ( ’O Z,“) and Jz(’zh = i,é /fqz'\z—l,i(o’zi,lzh>w'th

jf? h) = sgk) P é’m {5 (.h) }°O L are independent unit exponential variables which are
independent of {(55 ), kh))}e 1~ Moreover, {(fe ,Zkh),JM )}72, are mutually independent

with respect to i = 1,2 and (k, h) € S(i).

Remark: D(v) is a sum of multivariate compound Poisson processes and only depends on pairs of]

adjacent regions.

Intuitively, this is because D(v) largely relies on those points lying in a local neighbourhood of the
true splitting hyperplanes, whose |¢; | are on the order of O(T~'), which are rare events with their

occurrences asymptotically governed by a Poisson process.
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Asymptotic Distributions

> Let Gp = {vp, : D(v,,) < D(v) if v # v,,,} be the set of minimizers for D(v). Since D(v) is
a piece-wise constant random function, there are infinitely many elements in Gp.

» We use the centroid of Gp as the representative. For any set A of d-dimensional vectors, the
centroid of Ais C(A) = § _,vdv/{ _, dv

> Let 7% = C(Gp) and 3¢ = C(G), where G is the set for LS estimators for .

Assumption 5 (i) Fori =1 and 2, there exist constants 6s,c, > 0 such that
P(|gie| < 03, |gioss] < 03) < ca {P(|gis| < 03)}° uniformly fort =1 and j = 1; (ii) For each
z_1; € Z_1,, the conditional density f,z_,,(q|z—1;) is continuous at ¢ = 0 and

¢4 < fa1z_,,(0|z_1;3) < c5 for some constants cy, c5 > 0; (iii) For each { e R and z_1; € Z_, ;, the

conditional density few.n) 4 7z . ,(€lGi, 2-1,) is continuous at ¢; = 0 and fewm), 7z ,,(§]0,2-1;) < ¢co

for a constant cg > 0; (iv) Z_,; is a compact subset of R4~}
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Asymptotic Distributions

Theorem 3 (Asymptotic distribution)

Under Assumptions 1-5, we have (i) \/T(ﬁk — Bro) 4N (0,%) fork =1,---,4 and
T(3° =) > ~%; (i) {VT(Br — Bro)}:_, and {T'(A§ —jo)}3=, are asymptotically independent.

» The limiting process D(v) is derived by the asymptotics of the point process induced by

{(ft(k’h), Z 1,4, Tq;1)} ., using large sample theories for extreme values.

» To accommodate discontinuities of the processes, we employed the epi-convergence in
distribution (Knight, 1999), which is more general than the classic uniform convergence in
distribution.

» The asymptotic independence of T'(4¢ — 1) and T (45 — ~20) was shown by establishing a

thinning theorem of the Poisson process for the a-mixing sequences.
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Computation

» Recall that the objective function is non-convex:

T 4 2
Myr(6) = > {Y; — > X7 Beli(Z] 7, Zf’h)} :

t=1 k=1

> For the univariate threshold model Y = X"8 + X"01(Z > r) + ¢, the LSE of the 7 is often

obtained via grid search, which is not suitable for multivariate boundaries.

» Since M1 (8) involves an indicator function, it is natural to consider transforming the original

problem into a mixed integer quadratic programming (MIQP) problem.

» The general form of MIQP:
min x"Hx + c*x
s.t. Ax <b

x P x R"P

» Key idea of forming the MIQP: use reparametrization and introduce some linear inequalities

to guarantee the MIQP is equivalent to the original problem.
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Mixed integer quadratic programming

The original LS problem (4) is reformulated to an MIQP problem as follows.
Letg={g;::j=12,t=1,--- T}, T={ly,:k=1,---,4,t=1,--- T} and
£={lpir:k=1,---,4i=1,---,p,t=1,--- T} Solve the following problem:

sz 3 (- ZZ“)
(BreB, ~v;ely, giie{0,1}, L,e{0,1}, L; < b <U,
(gir — DMt +¢€) < Z;:t’yj < 9jaMjy, Tiely < Uyip < I Ui,
subject to 4 (1 — I;+) < Bri — lris < Us(1 — Iiy),

It < s( )g]t + (1 - s(k))/Q Iy > Z {s(k)g]t + (1 - s )/2}

\ Jj=1

fork=1,---,4,7=12,9=1,--- ,pandt=1,---,T.
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Mixed integer quadratic programming

The following theorem shows that the formulated MIQP is equivalent to the original LS problem.

Theorem 4

For any small € > 0 in (8), let 8 = (3™, 8")" be a solution of the MIQP defined with (7) and (8),
then MT(é) — M (0) where 6 is a solution in (4).

» It can be efficiently solved via modern optimization software, such as GUROBI and CPLEX.

» We also proposed a blockwise coordinate descent version for large-dimension scenarios.

17/34



Inference for the Boundary Coefficient

» Since the inference for 3, is standard, we focus on the inference for the boundary coefficient ~j.
» The asymptotic distribution of T'(§¢ — ~g) is nonpivotal and hard to simulate.

» A natural idea for is to employ the bootstrap. However, the nonparametric, the residual, and

the wild bootstrap are all failed to consistently approximate the distribution of T' (4 — o).

Reason: The bootstrap sampling distribution I@T must approximate the true distribution P
in the neighbourhood of the boundary hyperplanes. However, P is continuous around the

true boundaries so that =, is identifiable, while conditional on the original data, the bootstrap

distribution I@T is discrete under the aforementioned bootstraps.

» Our remedy is to first smooth the data, then resampling from the smoothed distribution.
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Smoothed regression bootstrap

» Suppose that W ~ P, follows the segmented model with heteroscedastic errors:

4
Y =) X"Bo1{Z € Ry(v0)} + 0(X, Z)e, (9)
k=1
where e Il (X, Z) with E (e) = 0,E (¢?) = 1, and 0%(X, Z) is the conditional variance.
» Let K;(-) and K5(-) be a p-dimensional and a (d; + ds)-dimensional kernel functions,
respectively. Let G;(u) = {*  K;(u)du for i = 1,2. Our kernel estimator for Fy(x, z) is

~ 1 Xi—x
Fz) - 7 36 (2
t=1

» For any given (x, z), the local linear estimator 5%(x, z) = @, which is defined by

T
&.7) = argmin 2_a—((X,—2)" (Z — 2" )V K, X, —x K, Zi— =z '
! (o) t ! b
an)  t=1

> Let e, = &;/6( X+, Z;) and @(e) be the empirical distribution of the centered {ét};f:l.
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Smoothed regression bootstrap

We need the following conditions on the underlying stationary distribution and its density functions,

the kernel functions, and the smoothing bandwidths to facilitate the Bootstrap procedure.

Assumption 6 (i) The stationary distribution Fy of (X, Z;) has a compact support and is
absolute continuous with density fo(x, z) which is bounded and inf, . fo(x,z) > 0.
(i) The conditional variance function o3 (x, z) is bounded and inf, . o3(x, z) > 0.
(iii) The kernels K,(-) and Ks(-) are symmetric density functions which are Lipshitz continuous and
have bounded supports. The smoothing bandwidths satisfy h;,b; — 0 for i = 1 and 2, and
T(og T)'hPh$ "% — oo and T(log T) " "Wb3 T — o0 as T — o0,

Under Assumptions 1 and 6, it can be shown that sup,, , | Fo(x, 2) — Fo(z, 2)| 2 0, and

| 250, following the uniform convergence results of kernel density and

SUPyg » Haﬁ<m* Z) o 0(2)(m7 Z)

regression estimators for the a-mixing sequences.
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Smoothed Bootstrap: Procedure

Step 1: First, generate {(X}, Z;)}T_, independently from E'(z, z) and {e}}Z, independently from
G(e), respectively. Then, generate Y= (X)) ﬁk]l{Z* € R(Y9)} + o (X[, Z} e} to
obtain bootstrap resample {(Y;*, X}, Z})}L,.

Step 2: Compute the LSEs based on {(V;*, X}, Z})}L_,, where B* is the LSE for B, and {51, are
the LSEs for ~, for a sufficiently large N. Let 4*¢ = 3 4*/N.

Step 3: Repeat the above two steps B times for a large positive integer B to obtain {4;°}2 |, and use
the empirical distribution of {T(fyg“c -9, \/T(B;; - ,@)}f_l as an estimate of the distribution
of {T (3° — %) . VT (B — Bo)}.

Denote the distribution of {T' (3¢ — 7o), \/T(é — Bo)} as L1 and the empirical distribution of
{755 VT(B; ~B)} as Lrs

Theorem 5

S
=

Suppose that Assumptions 1-6 hold. Then p (Lt g, Lr) 2,0 as B,T — o, for any metric p that

metrizes weak convergence of distributions.
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Degenerated Models

(A): four-regime

Hy
Ry Ry
(77+) (+7+)
Hy
R3 Ry
(_7_) (+7_)

(D): two-regime (b.1)

H,

Figure: Segmented models with no more than four regimes. The signs of (2171, 232) for each region are

(+)

indicated below the region names.

(B): three-regime (a.1)

Hg H1
R3 | Ro Ry
(_7_) (_7+) (+7+)

(E): two-regime (b.2)

H,q

(—,+)U(—,—)U(+,—)

(C): three-regime (a.2)

(F): global model

[Question: How will LSE with I = 2, K = 4 behave in the degenerated cases with L < 2, K < 47 ]




Properties under Degenerated Models

Let B = {ﬁk 4_, and G = {7;}3_, be the LS estimators for the regression and the boundary

coefficients, respectively. For a set H = {h;}/_, and a vector v, let d(v, H) = min; |v — h;],.

Theorem 6

For degenerated models with K, regimes and L splitting hyperplanes, where 1 < Ky < 4 and

0 < Loy < 2 under Assumption 1 and Assumptions 52-54 in the SM, which adapt Assumptions 3—4
to the degenerate model settings, then for each By with 1 < k < Ko, d(Bro, B) = O,(1/NT). If

Ly =1, then d(’yo,é) = 0,(1/T). If Ly = 2, then d(’m,é) = 0,(1/T) for each i =1 and 2.
Moreover, for any of the degenerated models with K, < 4 regimes, there exists an index set
Or < {1, -+ ,4} such that P{Z € Ry(vo) A vico, Ri(¥)} = O(1/T) for each 1 < k < K.

» The estimated boundaries and the regression coefficients obtained under (4) of the

four-regime model are consistent to the true parameters of degenerated models.

» Each true region asymptotically equals to a estimated region or a union of some estimated

regions.
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Backward elimination fitting

Starting from the estimated four-regime model, we recursively find the best pairs of adjacent regimes

to be merged, under a criterion that the merging leads to the minimal increase in the fitting errors.

For K = 4,3, 2, recursively define

T T
DYO (i h) = mmZYt X[B1{Z; € R™ U R%}]? Z ~ > X[B{1{Z, e R}

k=i,h

to be the increment in the SSR after merging }A%(K) and E(K) Let A, be the pair of indices for the
adjacent segments of {R<K }. We merge the segments R 9 and R<K if

(i,h) = arg min DEO (i, h), (10)
(i,h)eAx
followed by labelling the merged region and the remaining regions as {R(K Y sz_ll, and we denote
the estimated regression coefficients to these K — 1 regimes by {B(K Y szll.
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Model selection

After obtaining the S (K) for K = 2,3,4, we select the number of segments K as

ST(K)) + AT—TK} (11)

K = arg min{log(
1<K <4 T

and output the estimated regimes and regression coefficients accordingly. The following theorem

shows that the above selection algorithm has the model selection consistency.

Theorem 7

Under the assumptions of Theorem 6, and Ay — o0, Ap/T — 0 as T — oo, then K selected in (11)
satisfies P(K = K,) — 1 as T — 0. In addition, P{ﬁ;f) A Ri(v)} = O(1/T) and
IBE = Brol = Op(1/VT) for any ke {1, , Ko}.
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Simulation: Four-Regime Model

TABLE 1
Empirical average estimation errors ||vg — || and ||Bo — B||o (multiplied by 10), under the independence
(IND), auto-regressive (AR) and moving average (MA) settings with different dependence level 1) for
{Xt, 214,224 }le. The numbers inside the parentheses are the standard errors of the simulated averages.

IND AR MA
T =0 P =0.2 P =0.4 P =0.8 P =02 P =0.4 $»=0.8
5 & 8 & @ 4 8 3 B8 4y B8 5 B
094 668 092 666 088 643 08 59 093 663 09 649 085 6.14

o 0.59) (1.7) (0.58) (1.68) (0.6) (1.56) (0.61) (2.24) (0.56) (1.63) (0.54) (1.66) (0.52) (1.8)
400 045 455 045 455 045 4.4 043 398 044 446 043 438 043 4.06
03) (1.1) (03) (@1.11) (0.27) (1.17) (0.29) (1.53) (0.28) (1) (0.33) (1.07) (0.28) (1.21)
800 025 311 024 3.09 022 297 022 264 023 311 025 303 022 281
(0.16) (0.66) (0.15) (0.66) (0.14) (0.66) (0.14) (0.96) (0.14) (0.66) (0.16) (0.65) (0.15) (0.72)
1600 0.11 22 011 218 012 211 011 1.8 011 217 0.11 211 0.11 197

(0.07) (0.46) (0.07) (0.47) (0.08) (0.5) (0.07) (0.77) (0.07) (0.45) (0.07) (0.47) (0.07) (0.54)
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Simulation: model selection

TABLE 2

Empirical model selection results under 500 replications. The performances were evaluated by the average
estimated number of regimes K the discrepancy between the true regimes and the estimated regimes D(R, R)
and the Ly estimation error of regression coefficients D(B, B). The penalty parameter A was chosen in

{5,51l0g(T), 51og(T)}. The numbers inside the parentheses are the standard errors of the simulated averages.
— — — 2
Model T Ar=5 A =51log(T) A =5log*(T)
K D®RR DBB K D®RR DBB K D®R7R) D®BB

200 4.00 0.03 0.61 3.99 0.03 0.62 2.78 0.87 2.24
0.00)  (0.02) (0.12)  (0.08)  (0.04) ©0.16) (087  (091) (1.05)

4.00 0.01 0.41 4.00 0.01 0.41 3.92 0.05 0.53
I\;I;)(doel:(i;) 400 (0.00) (0.01) (0.08) (0.00) (0.01) (0.08) 0.27) (0.13) (0.43)
800 4.00 0.01 0.29 4.00 0.01 0.29 4.00 0.01 0.29
(0.00) (0.00) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600 4.00 0.00 0.20 4.00 0.00 0.20 4.00 0.00 0.20
(0.00) (0.00) (0.04) (0.00) (0.00) (0.04) (0.00) (0.00) (0.04)

200 3.44 0.12 0.50 3.00 0.02 0.48 2.85 0.13 0.75
(0.50) (0.11) (0.11) (0.00) (0.02) (0.11) (0.38) (0.30) (0.69)

3.39 0.10 0.34 3.00 0.01 0.33 3.00 0.01 0.33
N(I;):(:1=(63;) 400 (0.49) (0.11) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)
300 3.33 0.08 0.23 3.00 0.01 0.22 3.00 0.01 0.22
(0.47) (0.11) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600 3.33 0.08 0.16 3.00 0.00 0.16 3.00 0.00 0.16
(0.47) (0.11) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

200 3.38 0.14 0.35 2.03 0.01 0.30 2.00 0.01 0.30
(0.59) (0.11) (0.10) 0.17) (0.01) (0.08) (0.00) (0.01) (0.08)

3.54 0.13 0.24 2.01 0.01 0.20 2.00 0.01 0.20
N(I}’(d;l:@z'?) 40 051 i1 (0.07)  (0.08  (0.01) 0.05)  (0.00)  (0.00) (0.05)
800 3.53 0.12 0.16 2.00 0.00 0.14 2.00 0.00 0.14
(0.53) (0.11) (0.04) (0.06) (0.00) (0.04) (0.00) (0.00) (0.04)

1600 3.50 0.13 0.12 2.00 0.00 0.10 2.00 0.00 0.10
(0.55) (0.12) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)
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Simulation: smoothed regression bootstrap

TABLE 3
Empirical coverage probabilities and widths ( x 100 in parentheses) of the 95% confidence intervals for five
projected parameters {'yg d; },‘?:1 obtained with the smoothed regression bootstrap (Smooth) and the wild
bootstrap (Wild) based on 500 resamples.

dq d ds dy ds

T

Smooth  Wild Smooth Wild Smooth Wild Smooth Wild Smooth Wild

200 0.92 0.87 0.97 0.87 0.93 0.90 0.93 0.83 0.96 0.86
(6.76) (3.57) (691) (391) (5.78) (4.02) (6200 (3.44) (6.86) (3.56)

400 0.95 0.86 0.94 0.83 0.97 0.86 0.94 0.88 0.97 0.85
3.31) (1.69) (357 (189 (256) 194 (337 (1.73) (3.69) (1.75)

300 0.93 0.85 0.96 0.87 0.94 0.88 0.96 0.88 0.96 0.87
(1.70) (0.83) (1.76) (099) (1.68) (1.00) (1.72) (0.86) (1.80) (0.76)

1600 0.95 0.83 0.94 0.88 0.95 0.90 0.96 0.84 0.94 0.85

(0.81) (0.40) (0.86) (0.51) (0.89) (0.53) (0.85) (0.41) (0.79)  (0.42)
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Case Study

[Goal: To explore the relationship between meterological variables and PM, 5. ]

» Response: PM, 5;
Covariates: temperature (TEMP), dew point temperature (DEWP), pressure (PRES),
cumulative wind speed (IWS), wind direction (NE, NW, SE, SW, CV), boundary layer height
(BLH) and the one-hour lagged PM2.5 term (Lag).

» Time range: January 1, 2019 to December 31, 2019.

» Testing data: 11-th day to the 20-th day of each month;
Training data: the rest samples of each month.

» Comparison models:

1. the global linear regression (GLR);

2. the two-regime model (2-REG) of Lee et al. (2021), Yu and Fan (2021);
3. the four-regime model (4-REG);

4. the linear regression tree (LRT) of Breiman et al. (1984);

5. the multivariate adaptive regression splines (MARS) of Friedman (1991)
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Case Study: Model Comparision

Fig 2: Mean squared errors (MSE) for PM> 5 on the training (red) and testing (green) sets for each sea-
son of five models, including global linear regression (GLR), two-regime model (2-REG), four-regime
model (4-REG), linear regression tree (LRT) and multivariate adaptive regression splines (MARS),

with model ranks (in increasing order of the MSEs) marked on top of the bars.
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Average rank of RMSE.

The 4-REG achieved the best out-of-sample performances.

GLR | 2-REG | 4-REG | LRT | MARS
Train 5 3.75 2.5 1.75 2
Test 3 2 1 4.75 4.25
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Case Study: Splitting Boundaries
(a) Spring

Table 4: Estimated coefficients of the splitting boundaries and cos of the angle ¢ between the two boundaries.
The coeflicients were normalized such that coeflicients of the intercept terms were 1. All the covariates were

standardized such that their sample means were 0 and standard deviations were 1 in each season.

Season ~ | TEMP DEWP IWS log(BLH) NE NW SE SW | cosd
1 1.3 -2.5 -0.0 -0.4 0.9 0.3 01 00

Spring 0.78
2 0.4 -0.5 -0.1 -0.1 0.6 0.6 01 0.3
1 1.0 5.5 -12.9 -0.0 -12.7 -15.0 -89 -9.0

Summer 0.75
2 0.4 0.2 -0.2 0.0 0.7 0.7 -07 -0.7
1 0.7 -1.0 0.3 -0.1 0.5 -0.0 0.3 0.0

Fall 0.65
2 -0.5 1.6 -1.0 0.0 0.1 -1.6 -1.3 -0.1
i 1 0.2 -0.5 0.6 -0.2 0.2 0.4 04 -0.4

Winter 0.45
2 0.0 -0.6 0.2 -0.4 12 1.4 03 10

» The DEWP and the wind-related variables were the most important variables in determining the

estimated boundaries.
» The splitting boundaries are determined empirically by multivariate covariates, while the boundary

variable has to be user-specified in classic threshold regression.
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Case Study: Regime Splitting in
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state; Regime 3: lowest DEWP & mainly northerly wind = cleaning state

The data-driven regime-splitting results had clear atmosphere physics interpretation:
Regime 1: high DEWP & CV = pollution state; Regime 2: lower DEWP & reduced CV = transitional

32/34



Summary
The segmented regression model is an intermediate between the global and local model, but has
been underexplored. In this work, we contribute to this area in several aspects:
> propose a more flexible class of segmented models that extends threshold/change point
regression;
» the asymptotics under weakly dependent data;
» smoothed regression bootstrap for inference;
» model selection with consistency guarantee;
» MIQP-based computation method.
Future interests:

» nonlinear splitting boundaries;

v

high-dimensional segmented regressions;

» extension to tree-based regressions;

%7% W’/
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