Semi-supervised D-Learning for Optimal Individual Treatment Regimes

Xintong Li

East China Normal University

Joint work with Shuyi Zhang and Yong Zhou
July 13, JCSDS 2025

Outline

- Introduction
- Methodology
- Asymptotic properties
- Numerical Simulations
- Beal Data Analysis: MIMIC-IV
- Conclusions

2/30

Precision Medicine

- Heterogeneity: different patients respond differently to the same treatment.
 - Positive treatment effects;
 - Side effects.
- One-size-fits-all → Precision Medicine
- Advantages:
 - Improve patient adherence;
 - Reduce unnecessary treatments and side effects;
 - Promote recovery;
 - Enhance quality of care and quality of life;
 - Optimize allocation of medical resources;
 - Lower overall healthcare costs;

Current Medicine One Treatment Fits All

Future Medicine More Personalized Diagnostics

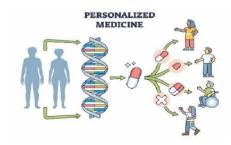
3/30

Precision Medicine - Personalized Decision-Making

- Goal: Find the optimal mapping from individual characteristics $X \in \mathcal{X}$ to treatments $A \in \mathcal{A}$, i.e. $d^{opt}(X)$, to maximize the expected clinical outcome $E[Y^*(d(X))]$.
 - ► X: demographics, clinical features, genetic information, environmental factors, etc.;
 - ► A: drug choice, dosage, surgery, specific dietary or exercise recommendations, etc.;
 - ▶ Y: biomarker levels, survival time, disease progression or remission status, quality of life scores, etc.

Applications:

- Disease management: Recommend the optimal drug dosage based on patient characteristics to optimize treatment efficacy;
- Smart health monitoring: Use wearable devices and biosensors for personalized health management;
- Personalized medical intervention: Combine multimodal data to predict disease risk and enable early intervention.



4/30

Personalized Decision-Making - Beyond Precision Medicine

 Computer Science: context-aware recommender systems that improve accuracy by incorporating time, location, and social context.

 Finance: provide personalized investment advice and wealth management plans based on consumption habits and risk preferences.

 Public Management: improve the overall effectiveness of policies through personalized interventions targeting individuals with high social connectivity.

Traditional Methods

• Q-learning (Qian and Murphy, 2011; Watkins, 1989; Watkins and Dayan, 1992) Define the Q-function: $Q(\mathbf{x}, a) := E[Y|\mathbf{X} = \mathbf{x}, A = a]$, and specify a model $Q(\mathbf{X}, A; \beta)$.

$$\widehat{d}^{opt}(\mathbf{X}) = \underset{a \in \mathcal{A}}{\operatorname{arg \, max}} Q(\mathbf{X}, a; \widehat{\boldsymbol{\beta}}),$$

where $\widehat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - Q(\mathbf{X}_i, A_i; \boldsymbol{\beta}))^2$.

• A-learning (Blatt et al., 2004; Murphy, 2003; Robins, 2004)

Define the contrast function: $C(\mathbf{X}) = Q(\mathbf{X}, 1) - Q(\mathbf{X}, 0)$, then $d^{opt}(\mathbf{X}) = I(C(\mathbf{X}) \geqslant 0)$.

Doubly robust A-learning: Let $\nu(\mathbf{X}) = E[Y|\mathbf{X}]$ and $\pi(\mathbf{X}) = E[A|\mathbf{X}]$, with corresponding estimators $\widehat{\nu}(\mathbf{X})$ and $\widehat{\pi}(\mathbf{X})$. Specify a model for the contrast function $C(\mathbf{X}; \boldsymbol{\theta})$, then

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} \{ Y_i - \widehat{\nu}(\mathbf{X}_i) - [A_i - \widehat{\pi}(\mathbf{X}_i)] C(\mathbf{X}_i; \boldsymbol{\theta}) \}^2.$$

Traditional Methods

- Direct search methods (Chu et al., 2023; Zhang et al., 2012) Denote value function $V(d(\mathbf{X})) := E[Y(d(\mathbf{X}))]$, then $d^{opt}(\mathbf{X}) = \underset{d(\mathbf{X}) \in \mathcal{D}}{\arg\max} V(d(\mathbf{X}))$.
 - ▶ IPW-based estimator: $\widehat{V}_{IPW}(d(\mathbf{X})) = P_n \left[\frac{I(A=d(\mathbf{X}))}{\widehat{\pi}(\mathbf{X},A)} Y \right]$.
 - ▶ AIPW-based estimator: $\widehat{V}_{AIPW}(d(\mathbf{X})) = P_n \left[\frac{I(A=d(\mathbf{X}))}{\widehat{\pi}(\mathbf{X},A)} Y \frac{I(A=d(\mathbf{X}))-\widehat{\pi}(\mathbf{X},A)}{\widehat{\pi}(\mathbf{X},A)} \widehat{Q}(\mathbf{X},d(\mathbf{X})) \right]$, where $Q(\mathbf{X},d(\mathbf{X})) = Q(\mathbf{X},1)I(d(\mathbf{X})=1) + Q(\mathbf{X},0)I(d(\mathbf{X})=0)$.
- D-learning (Qi et al., 2020; Qi and Liu, 2018; Shah et al., 2023)

$$\begin{split} d^{\mathsf{opt}}(\mathbf{X}) &= \mathsf{sign}\{E[Y|\mathbf{X}, A = 1] - E[Y|\mathbf{X}, A = -1]\} = \mathsf{sign}\left\{E\left[\frac{AY}{\pi(A, \mathbf{X})} \middle| \mathbf{X}\right]\right\} := \mathsf{sign}\{f^{\mathsf{opt}}(\mathbf{X})\}. \\ f^{\mathsf{opt}}(\mathbf{X}) &\in \mathop{\arg\min}_{f(\mathbf{X}) \in \mathcal{F}} E\left[\frac{1}{\pi(\mathbf{X}, A)} (2AY - f(\mathbf{X}))^2\right]. \end{split}$$

Chanlleges

In the literature, **linear decision classes** are particularly favored by researchers due to their **simple structure** and **good interpretability** (Chu et al., 2023; Fan et al., 2017; Li et al., 2025).

- Misspecification → Suboptimal decisions (Maronge et al., 2023; Zhao et al., 2012).
 - Song et al. (2017) proposed a novel method to estimate optimal ITR under a semiparametric additive single-index model and the link function was estimated by B-spline. But it suffers from model mis-specification.
 - Qi and Liu (2018) handled the nonlinear ITR by kenel-based and machine learning methods.
- Scarcity of labeled data → Underutilization of large amounts of unlabeled data.

8/30

Chanlleges

In the literature, **linear decision classes** are particularly favored by researchers due to their **simple structure** and **good interpretability** (Chu et al., 2023; Fan et al., 2017; Li et al., 2025).

- Misspecification → Suboptimal decisions (Maronge et al., 2023; Zhao et al., 2012).
 - Song et al. (2017) proposed a novel method to estimate optimal ITR under a semiparametric additive single-index model and the link function was estimated by B-spline. But it suffers from model mis-specification.
 - Qi and Liu (2018) handled the nonlinear ITR by kenel-based and machine learning methods.
- Scarcity of labeled data → Underutilization of large amounts of unlabeled data.

Semi-supervised learning: Leverage information from both labeled and unlabeled data to enhance estimation efficiency and robustness.

8/30

Outline

- Introduction
- 2 Methodology
- Asymptotic properties
- Mumerical Simulations
- Seal Data Analysis: MIMIC-IV
- 6 Conclusions

9/30

Methodology

Notations (X, A, Y)

 $\mathbf{X}=(1,X_1,\ldots,X_p)\in\mathcal{X}\subseteq\mathbb{R}^{p+1}$: p-dimensional covariates $\mathbf{X}^-=(X_1,\ldots,X_p)$ including the interception term, with bounded support \mathcal{X} , and positive definite variance $\text{Var}(\mathbf{X}^-)$;

 $A \in \mathcal{A} = \{-1, 1\}$: the binary treatment indicator;

 $Y \in \mathcal{Y} \subseteq \mathbb{R}$: the outcome variable, larger values are better.

Observations $\mathcal{L} \cup \mathcal{U}$

 $\mathcal{L} = \{(\mathbf{X}_i, A_i, Y_i) : i = 1, 2, ..., n\}$: n iid labeled observations;

 $\mathcal{U} = \{\mathbf{X}_i : i = n+1, n+2, \dots, n+N\}$: N iid unlabeled observations.

10/30

Methodology

Semi-supervised assumptions

- a. $\mathcal{L} \perp \mathcal{U}$;
- b. Observations in \mathcal{L} and \mathcal{U} potentially follow the same distribution;
- c. $\frac{n}{N} \to 0$ as $n, N \to \infty$.

Identifiability Assumptions

Let $Y^*(a)$ be the potential outcome.

- a. SUTVA: $Y = \sum_{a \in \mathcal{A}} Y^*(a)I(A = a)$;
- b. Ignoreability: $A \perp \{Y^*(-1), Y^*(1)\} \mid \mathbf{X};$
- c. Positivity: $0 < P(A = a | \mathbf{X} = \mathbf{x}) < 1$.

11/30

Methodology

D-learning - Equivalent representation of optimal ITR

$$d^{\mathsf{opt}}(\mathbf{X}) = \mathsf{sign}\{E[Y|\mathbf{X},A=1] - E[Y|\mathbf{X},A=-1]\} = \mathsf{sign}\left\{E\left[\frac{AY}{\pi(A,\mathbf{X})}\bigg|\mathbf{X}\right]\right\} := \mathsf{sign}\{f^{\mathsf{opt}}(\mathbf{X})\}.$$

Structural Nested Mean Model (SNMM)

$$Y = \mu_0(\mathbf{X}) + A\delta(\mathbf{X}) + e, E[e] = 0 \Longrightarrow f^{\text{opt}}(\mathbf{X}) = 2\delta(\mathbf{X}).$$

Linear decision function class: $f \in \mathcal{F} = \{f(\mathbf{X}) = \mathbf{X}^T \boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^{p+1}\}.$

Supervised estimation:
$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} P_n \left\{ \frac{AY}{\pi(A, \mathbf{X})} - \mathbf{X}^T \boldsymbol{\beta} \right\}^2$$
.

Assume $\pi(1,\mathbf{X})=0.5$ in a RCT setting. Define $\boldsymbol{\beta}_0$ as the solution to the equation

 $E[\mathbf{X}(2AY - \mathbf{X}^T\boldsymbol{\beta})] = 0$. The supervised estimator is obtained by solving

$$P_n \mathbf{X} (2\mathbf{A}\mathbf{Y} - \mathbf{X}^T \boldsymbol{\beta}) = 0.$$

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 12 / 30

Misspecification of linear decision classes ⇒ Semi-supervised D-learning (SSDL)

SSDL estimator based on fully nonparametric imputation: \widehat{eta}_{np}

Let $m(\mathbf{X}) = E[2AY|\mathbf{X}] = E[2AY|\mathbf{X}^-]$, and its corresponding kernel estimator is

$$\widehat{m}(\mathbf{X}_{j}) = \frac{(nh^{p})^{-1} \sum_{i=1}^{n} H_{h}(\mathbf{X}_{i}^{-}, \mathbf{X}_{j}^{-}) \times 2A_{i}Y_{i}}{(nh^{p})^{-1} \sum_{i=1}^{n} H_{h}(\mathbf{X}_{i}^{-}, \mathbf{X}_{j}^{-})},$$

where $H_h(u,v)=H(\frac{u-v}{h})$ with kernel function $H:\mathbb{R}^p\to\mathbb{R}$ and bandwidth h. Then $\widehat{\beta}_{np}$ be obtained by the solution of

$$\frac{1}{N} \sum_{i=n+1}^{n+N} \mathbf{X}_j(\widehat{\boldsymbol{m}}(\mathbf{X}_j) - \mathbf{X}_j^T \boldsymbol{\beta}) = 0.$$

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 13 / 30

Misspecification of linear decision classes ⇒ Semi-supervised D-learning (SSDL)

SSDL estimator based on fully nonparametric imputation: \widehat{eta}_{np}

Let $m(\mathbf{X}) = E[2AY|\mathbf{X}] = E[2AY|\mathbf{X}^-]$, and its corresponding kernel estimator is

$$\widehat{m}(\mathbf{X}_{j}) = \frac{(nh^{p})^{-1} \sum_{i=1}^{n} H_{h}(\mathbf{X}_{i}^{-}, \mathbf{X}_{j}^{-}) \times 2A_{i}Y_{i}}{(nh^{p})^{-1} \sum_{i=1}^{n} H_{h}(\mathbf{X}_{i}^{-}, \mathbf{X}_{j}^{-})},$$

where $H_h(u,v)=H(\frac{u-v}{h})$ with kernel function $H:\mathbb{R}^p\to\mathbb{R}$ and bandwidth h. Then $\widehat{\beta}_{np}$ be obtained by the solution of

$$\frac{1}{N} \sum_{i=n+1}^{n+N} \mathbf{X}_j(\widehat{\boldsymbol{m}}(\mathbf{X}_j) - \mathbf{X}_j^T \boldsymbol{\beta}) = 0.$$

Curse of dimensionality ⇒ **Projection (dimensionality reduction)** + **Refitting (debias)**

◆ロ > ◆団 > ◆豆 > ◆豆 > ・豆 * から○

13/30

SSDL estimator based on semiparametric imputation: $\widehat{oldsymbol{eta}}_{sp}$

Projection: Define $m(\mathbf{X}^T \boldsymbol{\beta}) = E[2AY|\mathbf{X}^T \boldsymbol{\beta}]$, and its corresponding kernel estimator is

$$\widehat{m}(\mathbf{X}_j^T\boldsymbol{\beta}) = \frac{(nh)^{-1} \sum_{i=1}^n K_h(\mathbf{X}_i^T\boldsymbol{\beta}, \mathbf{X}_j^T\boldsymbol{\beta}) * 2A_iY_i}{(nh)^{-1} \sum_{i=1}^n K_h(\mathbf{X}_i^T\boldsymbol{\beta}, \mathbf{X}_j^T\boldsymbol{\beta})},$$

where $K_h(u,v) = K(\frac{u-v}{h})$ with kernel function $K : \mathbb{R} \to \mathbb{R}$ and bandwidth h.

Refitting: Define θ_0 as the solution of $E[\mathbf{X}(2AY - m(\mathbf{X}^T\boldsymbol{\beta}_0) - \mathbf{X}^T\boldsymbol{\theta})] = 0$, and $\widehat{\boldsymbol{\theta}}$ is estimated by the estimating equation that

$$P_n \mathbf{X} (2AY - \widehat{m}(\mathbf{X}^T \widehat{\boldsymbol{\beta}}) - \mathbf{X}^T \boldsymbol{\theta}) = 0.$$

Denote the imputation function after refitting as $\nu(\mathbf{X}; \boldsymbol{\beta}, \boldsymbol{\theta}) = m(\mathbf{X}^T \boldsymbol{\beta}) + \mathbf{X}^T \boldsymbol{\theta}$, and its semiparametric (SP) estimator is

$$\widehat{\nu}(\mathbf{X}; \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\theta}}) = \widehat{m}(\mathbf{X}^T \widehat{\boldsymbol{\beta}}) + \mathbf{X}^T \widehat{\boldsymbol{\theta}}.$$

Then $\widehat{\beta}_{sp}$ can be obtained by solving

$$\frac{1}{N} \sum_{j=n+1}^{n+N} \mathbf{X}_j(\widehat{\nu}(\mathbf{X}_j; \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\theta}}) - \mathbf{X}_j^T \boldsymbol{\beta}) = 0.$$

Xintona Li (ECNU) SSDL July 13, JCSDS 2025 14/30

Overfitting? $\Longrightarrow \mathbb{K}$ -fold cross-validation (CV)

SSDL estimator based on semiparametric imputation with \mathbb{K} -fold CV: $\widehat{eta}_{sp,\mathbb{K}}$

Let \mathcal{L}_k be the k-th random disjoint partition of \mathcal{L} with sample size $n_{\mathbb{K}} = \frac{n}{\mathbb{K}}$ and index set \mathcal{I}_k for $k \in \{1, \dots, \mathbb{K}\}$. Let the set excluding the k-th partition be $\mathcal{L}_k^- = \mathcal{L} - \mathcal{L}_k$ with sample size $n_{\mathbb{K}}^- = n - n_{\mathbb{K}}$ and index set \mathcal{I}_k^- .

Denote the OLS and nonparametric imputation estimator under dimension reduction based on \mathcal{L}_k^- as $\widehat{\boldsymbol{\beta}}_k$ and $\widehat{m}_k(\mathbf{X}^T\boldsymbol{\beta})$ respectively. Then $\widehat{\boldsymbol{\theta}}_{\mathbb{K}}$ is obtained by solving

$$\frac{1}{n}\sum_{k=1}^{\mathbb{K}}\sum_{i\in\mathcal{I}_k}\mathbf{X}_i(2A_iY_i-\widehat{m}_k(\mathbf{X}_i^T\widehat{\boldsymbol{\beta}}_k)-\mathbf{X}_i^T\boldsymbol{\theta})=0,$$

and the semiparametric imputation function estimation is $\widehat{\nu}(\mathbf{X}; \widehat{\boldsymbol{\beta}}_k, \widehat{\boldsymbol{\theta}}_{\mathbb{K}}) = \frac{1}{\mathbb{K}} \sum_{k=1}^{\mathbb{K}} \widehat{m}_k(\mathbf{X}^T \widehat{\boldsymbol{\beta}}_k) + \mathbf{X}^T \widehat{\boldsymbol{\theta}}_{\mathbb{K}}$. Then $\widehat{\boldsymbol{\beta}}_{sp,\mathbb{K}}$ can be obtained by solving

$$\frac{1}{N}\sum_{i=n+1}^{n+N}\mathbf{X}_{j}(\widehat{\nu}(\mathbf{X}_{j};\widehat{\boldsymbol{\beta}}_{k},\widehat{\boldsymbol{\theta}}_{\mathbb{K}})-\mathbf{X}_{j}^{T}\boldsymbol{\beta})=0.$$

Xintona Li (ECNU) SSDL July 13, JCSDS 2025 15/30

Outline

- Introduction
- Methodology
- Asymptotic properties
- Mumerical Simulations
- 5 Real Data Analysis: MIMIC-IV
- 6 Conclusions

16/30

Asymptotic properties

Theorem 1

Under certain regularity conditions, we have

$$n^{\frac{1}{2}}(\widehat{\boldsymbol{\beta}}_{sp}-\boldsymbol{\beta}_0)=rac{1}{\sqrt{n}}\sum_{i=1}^n arphi(\mathbf{Z}_i)+O_p(r_{n,N}),$$

where the influence function $\varphi(\mathbf{Z}_i) = E[\mathbf{X}\mathbf{X}^T]^{-1}\{\mathbf{X}_i[2A_iY_i - \nu(\mathbf{X}_i; \boldsymbol{\beta}_0, \boldsymbol{\theta}_0)]\}$ and $r_{n,N} = O_p\left(\frac{n}{N}\right)^{\frac{1}{2}} + O_p(b_n)$ with $b_n = n^{-\frac{2q-3}{2(2q+1)}}$.

Thus $n^{\frac{1}{2}}(\widehat{\beta}_{sp} - \beta_0) \stackrel{d}{\to} N_{p+1}(\mathbf{0}, \Sigma)$ with positive definite $(p+1) \times (p+1)$ matrix $\Sigma = E[\mathbf{X}\mathbf{X}^T]^{-1}E\{\mathbf{X}\mathbf{X}^T[2AY - \nu(\mathbf{X}; \beta_0, \boldsymbol{\theta}_0)]^2\}E[\mathbf{X}\mathbf{X}^T]^{-1}$.

 Xintong Li (ECNU)
 SSDL
 July 13, JCSDS 2025
 17/30

Theorem 2

When the fold of CV is fixed and satisfies $\mathbb{K}\geqslant 2$, under the conditions same as Theorem 1, we have

$$n^{rac{1}{2}}(\widehat{eta}_{sp,\mathbb{K}}-oldsymbol{eta}_0)=rac{1}{\sqrt{n}}\sum_{i=1}^narphi(\mathbf{Z}_i)+O_p(\gamma_{n,N}),$$

where $\gamma_{n,N} = O_p\left(\frac{n}{N}\right)^{\frac{1}{2}} + O_p(a_{n_{\mathbb{K}^-}})$ with $a_n = n^{-\frac{q}{2q+1}}\sqrt{\log n}$. Thus $n^{\frac{1}{2}}(\widehat{\boldsymbol{\beta}}_{sp,\mathbb{K}} - \boldsymbol{\beta}_0) \overset{d}{\to} N_{p+1}(\boldsymbol{0}, \Sigma)$.

18/30

Outline

- Introduction
- Methodology
- Asymptotic properties
- Numerical Simulations
- Seal Data Analysis: MIMIC-IV
- Conclusions

19/30

Numerical Simulations

Data generation:
$$Y = \mu_0(\mathbf{X}) + A\delta(\mathbf{X}) + e$$
; $P(A = 1) = P(A = -1) = 0.5$, $e \sim N(0, 0.5^2)$, $\mathbf{X} = (1, X_1, X_2, \dots, X_p)'$: X_i $(i = 1, \dots, p) \sim U(-5, 5)$.

Model settting:

- Linear (Lin): $\delta(\mathbf{X}) = 20\mathbf{X}^T \alpha$,
- Nonlinear 1 (NL1): $\delta(\mathbf{X}) = 0.2(\mathbf{X}^T \alpha)^3$,
- Nonlinear 2 (NL2): $\delta(\mathbf{X}) = \mathbf{X}^T \alpha + 0.2 (\mathbf{X}^T \alpha)^3 + \sin(\mathbf{X}^T \alpha)$.
- Quadratic: $\mu_0^Q(\mathbf{X}) = \mathbf{X}^T \omega_1 + (\mathbf{X}^T \omega_2)^2$,
- Cubic: $\mu_0^C(\mathbf{X}) = 0.1(\mathbf{X}^T \omega_2)^3$.

Parameters setting:

$$\bullet \ \alpha = \alpha^{(a)} = (0, -\mathbf{1}_{p/2}^T, \mathbf{1}_{p/2}^T)^T,$$

$$\bullet \ \alpha = \alpha^{(b)} = (0, \mathbf{1}_p^T)^T$$

$$\bullet \ \omega_1 = (0, \mathbf{1}_{p/2}^T, -\mathbf{1}_{p/2}^T)^T,$$

$$\bullet \ \omega_2 = (0, \mathbf{1}_p^T)^T.$$

20 / 30

Table: The average of RE and PCD for p = 10

							/1\		
	$\alpha = \alpha^{(a)}$				$\alpha = \alpha^{(b)}$				
	Quadi	Quadratic $\mu_0^{\mathcal{Q}}(\mathbf{X})$		Cubic $\mu_0^C(\mathbf{X})$		Quadratic $\mu_0^Q(\mathbf{X})$		Cubic $\mu_0^C(\mathbf{X})$	
Lin	RE	PCD	RE	PCD	RE	PCD	RE	PCD	
SUP	1	96.20%	1	92.69%	1	96.85%	1	94.28%	
NP	0.19	92.64%	0.38	87.75%	0.19	92.99%	0.38	88.45%	
SP	0.99	96.16%	1.00	92.64%	1.06	96.94%	1.10	94.55%	
SP.CV	0.98	96.14%	0.98	92.64%	0.94	96.81%	0.92	94.18%	
KRLS	1.01	96.20%	1.07	92.79%	1.02	96.80%	1.06	94.30%	
KRLS.CV	0.94	96.10%	0.95	92.54%	0.94	96.71%	0.95	94.14%	
NL1	RE	PCD	RE	PCD	RE	PCD	RE	PCD	
SUP	1	96.60%	1	95.60%	1	96.84%	1	96.24%	
NP	0.20	92.51%	0.24	91.24%	0.19	91.87%	0.21	89.81%	
SP	3.05	97.97%	1.76	96.40%	3.12	98.46%	2.10	97.63%	
SP.CV	3.24	97.99%	1.89	96.57%	2.94	98.23%	1.62	97.27%	
KRLS	0.91	97.28%	0.98	96.06%	0.86	97.56%	0.94	96.62%	
KRLS.CV	1.54	97.08%	1.18	95.76%	1.52	97.34%	1.16	96.40%	

Table: The average of SE and CP of proposed estimators with p=10

SE(CP %)	Quadratic $\mu_0^Q(\mathbf{X})$			Cubic $\mu_0^C(\mathbf{X})$			
	SP	SP.CV	SP.DCV	SP	SP.CV	SP.DCV	
Lin $\alpha^{(a)}$	5.300 (93.5)	5.539 (94.6)	5.728 (95.2)	10.48 (93.8)	10.90 (94.6)	11.28 (95.6)	
Lin $lpha^{(b)}$	4.931 (91.8)	5.525 (93.5)	5.711 (94.1)	9.297 (89.5)	10.69 (92.2)	11.06 (93.0)	
NL1 $lpha^{(a)}$	5.590 (81.1)	7.214 (92.5)	7.473 (93.5)	10.75 (89.1)	12.10 (94.3)	12.53 (95.1)	
NL1 $lpha^{(b)}$	4.827 (73.2)	7.415 (90.4)	7.682 (91.4)	8.494 (81.6)	11.98 (90.4)	12.41 (91.2)	
NL2 $lpha^{(a)}$	5.579 (81.1)	7.204 (92.5)	7.462 (93.5)	10.74 (89.1)	12.09 (94.4)	12.52 (95.1)	
NL2 $lpha^{(b)}$	4.820 (73.2)	7.406 (90.4)	7.671 (91.4)	8.490 (81.6)	11.98 (90.4)	12.40 (91.2)	

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 22 / 30

Outline

- Introduction
- 2 Methodology
- Asymptotic properties
- Numerical Simulations
- 6 Real Data Analysis: MIMIC-IV
- 6 Conclusions

23 / 30

Real Data Analysis: MIMIC-IV

Subjects: 9,052 adult patients with sepsis who were first admitted to the ICU in the MIMIC-IV data.

Outcome: lactate clearance within 48 hours of ICU admission.

Tratments: A = -1: intravenous fluid resuscitation; A = 1: vasopressor therapy.

Covariates: age (years), admission weight (kilograms), blood urea nitrogen (BUN) amount (mg/dL), creatinine (mg/dL), white blood cell count (WBC) count (K/ μ L), and heart rate (HR) (bpm)

Sample size: labeled dataset: n=184 samples; unlabeled dataset: N=7,623 samples.

Table: Treatment recommendation

Treatment			N	Methods		
	SUP	NP	SP	SP.CV	KRLS	KRLS.CV
A=-1: IV Fluid Resuscitation	5113	5113	5112	5132	5150	5142
A=1: Vasopressors	2694	2694	2695	2675	2657	2665

 Xintong Li (ECNU)
 SSDL
 July 13, JCSDS 2025
 24/30

Outline

- Introduction
- Methodology
- Asymptotic properties
- Mumerical Simulations
- Beal Data Analysis: MIMIC-IV
- 6 Conclusions

July 13, JCSDS 2025

25 / 30

Xintong Li (ECNU)

Conclusions

- We propose a novel semi-supervised D-learning framework for estimating optimal individualized treatment regime (ITR).
- Theoretical results:
 - Estimators converge asymptotically to normality at \sqrt{n} rate, depending on labeled sample size.
 - Under model misspecification, semi-supervised estimator achieves lower asymptotic variance than supervised estimator.
- Numerical studies:
 - When linear decision model is correct, unlabeled data does not improve efficiency.
 - When misspecified, semi-supervised estimator significantly improves performance.
 - ▶ Remains robust with increasing covariate dimension *p*; outperforms fully nonparametric methods and KRLS-based estimators.
- Our method mitigates the curse of dimensionality, and maintains robustness and efficiency in multi-dimensions

Reference I

- Blatt, D., Murphy, S. A., and Zhu, J. (2004). A-learning for approximate planning. *Ann Arbor*, 1001:48109–2122.
- Chu, J., Lu, W., and Yang, S. (2023). Targeted optimal treatment regime learning using summary statistics. *Biometrika*, 110(4):913–931.
- Fan, C., Lu, W., Song, R., and Zhou, Y. (2017). Concordance-assisted learning for estimating optimal individualized treatment regimes. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 79(5):1565–1582.
- Li, C., Zeng, D., and Zhu, W. (2025). A robust covariate-balancing method for learning optimal individualized treatment regimes. *Biometrika*, 112(1):asae036.
- Maronge, J. M., D HULING, J., and Chen, G. (2023). A reluctant additive model framework for interpretable nonlinear individualized treatment rules. *The annals of applied statistics*, 17(4):3384.

Reference II

- Murphy, S. A. (2003). Optimal dynamic treatment regimes. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 65(2):331–355.
- Qi, Z., Liu, D., Fu, H., and Liu, Y. (2020). Multi-armed angle-based direct learning for estimating optimal individualized treatment rules with various outcomes. *Journal of the American Statistical Association*, 115(530):678–691.
- Qi, Z. and Liu, Y. (2018). D-learning to estimate optimal individual treatment rules. *Electronic Journal of Statistics*, 12(2):3601–3638.
- Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. *The Annals of Statistics*, 39(2):1180–1210.
- Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Lin, D. Y. and Heagerty, P. J., editors, *Proceedings of the Second Seattle Symposium in Biostatistics*, volume 179 of *Lecture Notes in Statistics*, pages 189–326, New York. Springer.

28/30

Reference III

- Shah, K. S., Fu, H., and Kosorok, M. R. (2023). Stabilized direct learning for efficient estimation of individualized treatment rules. *Biometrics*, 79(4):2843–2856.
- Song, R., Luo, S., Zeng, D., Zhang, H. H., Lu, W., and Li, Z. (2017). Semiparametric single-index model for estimating optimal individualized treatment strategy. *Electronic journal of statistics*, 11(1):364.
- Watkins, C. (1989). Learning from delayed rewards. PhD thesis, King's College.
- Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292.
- Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. *Biometrics*, 68(4):1010–1018.
- Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. *Journal of the American Statistical Association*, 107(499):1106–1118.

 Xintong Li (ECNU)
 SSDL
 July 13, JCSDS 2025
 29 / 30

Thank you for listening.

More details can be referred to "Li, X., Zhang, S., and Zhou, Y. (2025). Semisupervised D-Learning for Optimal Individualized Treatment Regimes. Stat, 14(2), e70063."

 Xintong Li (ECNU)
 SSDL
 July 13, JCSDS 2025
 30 / 30