
Semi-supervised D-Learning for Optimal Individual Treatment

Regimes

Xintong Li

East China Normal University

Joint work with Shuyi Zhang and Yong Zhou

July 13, JCSDS 2025

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 1 / 30



Outline

Introduction

Methodology

Asymptotic properties

Numerical Simulations

Real Data Analysis: MIMIC-IV

Conclusions

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 2 / 30



Precision Medicine
Heterogeneity: different patients respond
differently to the same treatment.

◮ Positive treatment effects;
◮ Side effects.

One-size-fits-all → Precision Medicine

Advantages:
◮ Improve patient adherence;
◮ Reduce unnecessary treatments and side effects;
◮ Promote recovery;
◮ Enhance quality of care and quality of life;
◮ Optimize allocation of medical resources;
◮ Lower overall healthcare costs;
◮ . . . . . .
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Precision Medicine - Personalized Decision-Making

Goal: Find the optimal mapping from individual characteristics X ∈ X to treatments A ∈ A, i.e.
dopt(X), to maximize the expected clinical outcome E[Y∗(d(X))].

◮ X: demographics, clinical features, genetic information, environmental factors, etc.;
◮ A: drug choice, dosage, surgery, specific dietary or exercise recommendations, etc.;
◮ Y: biomarker levels, survival time, disease progression or remission status, quality of life scores, etc.

Applications:
◮ Disease management: Recommend the optimal drug

dosage based on patient characteristics to optimize

treatment efficacy;
◮ Smart health monitoring: Use wearable devices and

biosensors for personalized health management;
◮ Personalized medical intervention: Combine multimodal

data to predict disease risk and enable early intervention.
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Personalized Decision-Making - Beyond Precision Medicine

Computer Science: context-aware recommender systems that

improve accuracy by incorporating time, location, and social

context.

Finance: provide personalized investment advice and wealth

management plans based on consumption habits and risk

preferences.

Public Management: improve the overall effectiveness of

policies through personalized interventions targeting individuals

with high social connectivity.
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Traditional Methods
Q-learning (Qian and Murphy, 2011; Watkins, 1989; Watkins and Dayan, 1992)

Define the Q-function: Q(x, a) := E[Y|X = x,A = a], and specify a model Q(X,A;β).

󰁥dopt(X) = argmax
a∈A

Q(X, a; 󰁥β),

where 󰁥β = argmin
β

1
n

󰁓n
i=1(Yi − Q(Xi,Ai;β))

2.

A-learning (Blatt et al., 2004; Murphy, 2003; Robins, 2004)

Define the contrast function: C(X) = Q(X, 1)− Q(X, 0), then dopt(X) = I(C(X) 󰃍 0).

Doubly robust A-learning: Let ν(X) = E[Y|X] and π(X) = E[A|X], with corresponding

estimators 󰁥ν(X) and 󰁥π(X). Specify a model for the contrast function C(X;θ), then

󰁥θ = argmin
θ

1
n

n󰁛

i=1

{Yi − 󰁥ν(Xi)− [Ai − 󰁥π(Xi)]C(Xi;θ)}2.
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Traditional Methods

Direct search methods (Chu et al., 2023; Zhang et al., 2012)
Denote value function V(d(X)) := E[Y(d(X))], then dopt(X) = argmax

d(X)∈D
V(d(X)).

◮ IPW-based estimator: 󰁥VIPW(d(X)) = Pn

󰁫
I(A=d(X))
󰁥π(X,A) Y

󰁬
.

◮ AIPW-based estimator: 󰁥VAIPW(d(X)) = Pn

󰁫
I(A=d(X))
󰁥π(X,A) Y − I(A=d(X))−󰁥π(X,A)

󰁥π(X,A)
󰁥Q(X, d(X))

󰁬
, where

Q(X, d(X)) = Q(X, 1)I(d(X) = 1) + Q(X, 0)I(d(X) = 0).

D-learning (Qi et al., 2020; Qi and Liu, 2018; Shah et al., 2023)

dopt(X) = sign{E[Y|X,A = 1]− E[Y|X,A = −1]} = sign
󰀝

E
󰀗

AY
π(A,X)

󰀏󰀏󰀏󰀏X
󰀘󰀞

:= sign{f opt(X)}.

f opt(X) ∈ argmin
f (X)∈F

E
󰀗

1
π(X,A)

(2AY − f (X))2
󰀘
.
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Chanlleges

In the literature, linear decision classes are particularly favored by researchers due to their

simple structure and good interpretability (Chu et al., 2023; Fan et al., 2017; Li et al., 2025).

Misspecification → Suboptimal decisions (Maronge et al., 2023; Zhao et al., 2012).
◮ Song et al. (2017) proposed a novel method to estimate optimal ITR under a semiparametric

additive single-index model and the link function was estimated by B-spline. But it suffers from

model mis-specification.
◮ Qi and Liu (2018) handled the nonlinear ITR by kenel-based and machine learning methods.

Scarcity of labeled data → Underutilization of large amounts of unlabeled data.
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Misspecification → Suboptimal decisions (Maronge et al., 2023; Zhao et al., 2012).
◮ Song et al. (2017) proposed a novel method to estimate optimal ITR under a semiparametric

additive single-index model and the link function was estimated by B-spline. But it suffers from

model mis-specification.
◮ Qi and Liu (2018) handled the nonlinear ITR by kenel-based and machine learning methods.

Scarcity of labeled data → Underutilization of large amounts of unlabeled data.

Semi-supervised learning: Leverage information from both labeled and unlabeled data to

enhance estimation efficiency and robustness.

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 8 / 30



Outline

Introduction

Methodology

Asymptotic properties

Numerical Simulations

Real Data Analysis: MIMIC-IV

Conclusions

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 9 / 30



Methodology

Notations (X,A, Y)

X = (1,X1, . . . ,Xp) ∈ X ⊆ Rp+1: p-dimensional covariates X− = (X1, . . . ,Xp) including the

interception term, with bounded support X , and positive definite variance Var(X−);

A ∈ A = {−1, 1}: the binary treatment indicator;

Y ∈ Y ⊆ R: the outcome variable, larger values are better.

Observations L ∪ U
L = {(Xi,Ai, Yi) : i = 1, 2, . . . , n}: n iid labeled observations;

U = {Xi : i = n + 1, n + 2, . . . , n + N}: N iid unlabeled observations.
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Methodology

Semi-supervised assumptions

a. L ⊥ U ;

b. Observations in L and U potentially follow the same distribution;

c. n
N → 0 as n,N → ∞.

Identifiability Assumptions
Let Y∗(a) be the potential outcome.

a. SUTVA: Y =
󰁓

a∈A Y∗(a)I(A = a);

b. Ignoreability: A ⊥ {Y∗(−1), Y∗(1)} | X;

c. Positivity: 0 < P(A = a|X = x) < 1.
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Methodology
Optimal ITR: dopt(X) = argmax

d
V(d) = argmax

d
E
󰁫

YI(A=d(X)
π(A,X)

󰁬
.

D-learning - Equivalent representation of optimal ITR

dopt(X) = sign{E[Y|X,A = 1]− E[Y|X,A = −1]} = sign
󰀝

E
󰀗

AY
π(A,X)

󰀏󰀏󰀏󰀏X
󰀘󰀞

:= sign{f opt(X)}.

Structural Nested Mean Model (SNMM)

Y = µ0(X) + Aδ(X) + e,E[e] = 0 =⇒ f opt(X) = 2δ(X).

Linear decision function class: f ∈ F = {f (X) = XTβ : β ∈ Rp+1}.

Supervised estimation: 󰁥β = argmin
β

Pn

󰁱
AY

π(A,X) − XTβ
󰁲2

.

Assume π(1,X) = 0.5 in a RCT setting. Define β0 as the solution to the equation

E[X(2AY − XTβ)] = 0. The supervised estimator is obtained by solving

PnX(2AY − XTβ) = 0.
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Misspecification of linear decision classes =⇒ Semi-supervised D-learning (SSDL)

SSDL estimator based on fully nonparametric imputation: 󰁥βnp

Let m(X) = E[2AY|X] = E[2AY|X−], and its corresponding kernel estimator is

󰁥m(Xj) =
(nhp)−1 󰁓n

i=1 Hh(X−
i ,X−

j )× 2AiYi

(nhp)−1
󰁓n

i=1 Hh(X−
i ,X−

j )
,

where Hh(u, v) = H( u−v
h ) with kernel function H : Rp → R and bandwidth h. Then 󰁥βnp be obtained

by the solution of
1
N

n+N󰁛

j=n+1

Xj(󰁥m(Xj)− XT
j β) = 0.
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Let m(X) = E[2AY|X] = E[2AY|X−], and its corresponding kernel estimator is

󰁥m(Xj) =
(nhp)−1 󰁓n

i=1 Hh(X−
i ,X−

j )× 2AiYi

(nhp)−1
󰁓n

i=1 Hh(X−
i ,X−

j )
,

where Hh(u, v) = H( u−v
h ) with kernel function H : Rp → R and bandwidth h. Then 󰁥βnp be obtained

by the solution of
1
N

n+N󰁛

j=n+1

Xj(󰁥m(Xj)− XT
j β) = 0.

Curse of dimensionality =⇒ Projection (dimensionality reduction) + Refitting (debias)
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SSDL estimator based on semiparametric imputation: 󰁥βsp

Projection: Define m(XTβ) = E[2AY|XTβ], and its corresponding kernel estimator is

󰁥m(XT
j β) =

(nh)−1 󰁓n
i=1 Kh(XT

i β,XT
j β) ∗ 2AiYi

(nh)−1
󰁓n

i=1 Kh(XT
i β,XT

j β)
,

where Kh(u, v) = K( u−v
h ) with kernel function K : R → R and bandwidth h.

Refitting: Define θ0 as the solution of E[X(2AY − m(XTβ0)− XTθ)] = 0, and 󰁥θ is estimated by the

estimating equation that

PnX(2AY − 󰁥m(XT 󰁥β)− XTθ) = 0.

Denote the imputation function after refitting as ν(X;β,θ) = m(XTβ) + XTθ, and its semiparametric

(SP) estimator is

󰁥ν(X; 󰁥β, 󰁥θ) = 󰁥m(XT 󰁥β) + XT 󰁥θ.

Then 󰁥βsp can be obtained by solving

1
N

n+N󰁛

j=n+1

Xj(󰁥ν(Xj; 󰁥β, 󰁥θ)− XT
j β) = 0.
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Overfitting? =⇒ K-fold cross-validation (CV)

SSDL estimator based on semiparametric imputation with K-fold CV: 󰁥βsp,K

Let Lk be the k-th random disjoint partition of L with sample size nK = n
K and index set Ik for

k ∈ {1, . . . ,K}. Let the set excluding the k-th partition be L−
k = L− Lk with sample size

n−
K = n − nK and index set I−

k .

Denote the OLS and nonparametric imputation estimator under dimension reduction based on L−
k

as 󰁥βk and 󰁥mk(XTβ) respectively. Then 󰁥θK is obtained by solving

1
n

K󰁛

k=1

󰁛

i∈Ik

Xi(2AiYi − 󰁥mk(XT
i
󰁥βk)− XT

i θ) = 0,

and the semiparametric imputation function estimation is 󰁥ν(X; 󰁥βk, 󰁥θK) = 1
K
󰁓K

k=1 󰁥mk(XT 󰁥βk) + XT 󰁥θK.
Then 󰁥βsp,K can be obtained by solving

1
N

n+N󰁛

j=n+1

Xj(󰁥ν(Xj; 󰁥βk, 󰁥θK)− XT
j β) = 0.
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Asymptotic properties

Theorem 1
Under certain regularity conditions, we have

n
1
2 (󰁥βsp − β0) =

1√
n

n󰁛

i=1

ϕ(Zi) + Op(rn,N),

where the influence function ϕ(Zi) = E[XXT ]−1{Xi[2AiYi − ν(Xi;β0,θ0)]} and

rn,N = Op
󰀃 n

N

󰀄 1
2 + Op(bn) with bn = n−

2q−3
2(2q+1) .

Thus n
1
2 (󰁥βsp − β0)

d→ Np+1(0,Σ) with positive definite (p + 1)× (p + 1) matrix

Σ = E[XXT ]−1E{XXT [2AY − ν(X;β0,θ0)]
2}E[XXT ]−1.
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Theorem 2
When the fold of CV is fixed and satisfies K 󰃍 2, under the conditions same as Theorem 1, we

have

n
1
2 (󰁥βsp,K − β0) =

1√
n

n󰁛

i=1

ϕ(Zi) + Op(γn,N),

where γn,N = Op
󰀃 n

N

󰀄 1
2 + Op(anK− ) with an = n− q

2q+1
√
log n. Thus n

1
2 (󰁥βsp,K − β0)

d→ Np+1(0,Σ).
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Numerical Simulations

Data generation: Y = µ0(X) + Aδ(X) + e; P(A = 1) = P(A = −1) = 0.5, e ∼ N
󰀃
0, 0.52

󰀄
,

X = (1,X1,X2, . . . ,Xp)
′: Xi (i = 1, . . . , p) ∼ U(−5, 5).

Model settting:

Linear (Lin): δ(X) = 20XTα,

Nonlinear 1 (NL1): δ(X) = 0.2(XTα)3,

Nonlinear 2 (NL2): δ(X) = XTα+ 0.2(XTα)3 + sin(XTα).

Quadratic: µQ
0 (X) = XTω1 + (XTω2)

2,

Cubic: µC
0 (X) = 0.1(XTω2)

3.

Parameters setting:

α = α(a) = (0,−1T
p/2, 1T

p/2)
T ,

α = α(b) = (0, 1T
p )

T

ω1 = (0, 1T
p/2,−1T

p/2)
T ,

ω2 = (0, 1T
p )

T .
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Table: The average of RE and PCD for p = 10

α = α(a) α = α(b)

Quadratic µQ
0 (X) Cubic µC

0 (X) Quadratic µQ
0 (X) Cubic µC

0 (X)

Lin RE PCD RE PCD RE PCD RE PCD
SUP 1 96.20% 1 92.69% 1 96.85% 1 94.28%
NP 0.19 92.64% 0.38 87.75% 0.19 92.99% 0.38 88.45%
SP 0.99 96.16% 1.00 92.64% 1.06 96.94% 1.10 94.55%

SP.CV 0.98 96.14% 0.98 92.64% 0.94 96.81% 0.92 94.18%
KRLS 1.01 96.20% 1.07 92.79% 1.02 96.80% 1.06 94.30%

KRLS.CV 0.94 96.10% 0.95 92.54% 0.94 96.71% 0.95 94.14%
NL1 RE PCD RE PCD RE PCD RE PCD
SUP 1 96.60% 1 95.60% 1 96.84% 1 96.24%
NP 0.20 92.51% 0.24 91.24% 0.19 91.87% 0.21 89.81%
SP 3.05 97.97% 1.76 96.40% 3.12 98.46% 2.10 97.63%

SP.CV 3.24 97.99% 1.89 96.57% 2.94 98.23% 1.62 97.27%
KRLS 0.91 97.28% 0.98 96.06% 0.86 97.56% 0.94 96.62%

KRLS.CV 1.54 97.08% 1.18 95.76% 1.52 97.34% 1.16 96.40%
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Table: The average of SE and CP of proposed estimators with p = 10

SE(CP %) Quadratic µQ
0 (X) Cubic µC

0 (X)
SP SP.CV SP.DCV SP SP.CV SP.DCV

Lin α(a) 5.300 (93.5) 5.539 (94.6) 5.728 (95.2) 10.48 (93.8) 10.90 (94.6) 11.28 (95.6)
Lin α(b) 4.931 (91.8) 5.525 (93.5) 5.711 (94.1) 9.297 (89.5) 10.69 (92.2) 11.06 (93.0)
NL1 α(a) 5.590 (81.1) 7.214 (92.5) 7.473 (93.5) 10.75 (89.1) 12.10 (94.3) 12.53 (95.1)
NL1 α(b) 4.827 (73.2) 7.415 (90.4) 7.682 (91.4) 8.494 (81.6) 11.98 (90.4) 12.41 (91.2)
NL2 α(a) 5.579 (81.1) 7.204 (92.5) 7.462 (93.5) 10.74 (89.1) 12.09 (94.4) 12.52 (95.1)
NL2 α(b) 4.820 (73.2) 7.406 (90.4) 7.671 (91.4) 8.490 (81.6) 11.98 (90.4) 12.40 (91.2)

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 22 / 30



Outline

Introduction

Methodology

Asymptotic properties

Numerical Simulations

Real Data Analysis: MIMIC-IV

Conclusions

Xintong Li (ECNU) SSDL July 13, JCSDS 2025 23 / 30



Real Data Analysis: MIMIC-IV

Subjects: 9,052 adult patients with sepsis who were first admitted to the ICU in the MIMIC-IV data.

Outcome: lactate clearance within 48 hours of ICU admission.

Tratments: A = −1: intravenous fluid resuscitation; A = 1: vasopressor therapy.

Covariates: age (years), admission weight (kilograms), blood urea nitrogen (BUN) amount

(mg/dL), creatinine (mg/dL), white blood cell count (WBC) count (K/µL), and heart rate (HR) (bpm)

Sample size: labeled dataset: n=184 samples; unlabeled dataset: N=7,623 samples.

Table: Treatment recommendation

Treatment Methods
SUP NP SP SP.CV KRLS KRLS.CV

A=-1: IV Fluid Resuscitation 5113 5113 5112 5132 5150 5142
A=1: Vasopressors 2694 2694 2695 2675 2657 2665
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Conclusions

We propose a novel semi-supervised D-learning framework for estimating optimal

individualized treatment regime (ITR).

Theoretical results:
◮ Estimators converge asymptotically to normality at

√
n rate, depending on labeled sample size.

◮ Under model misspecification, semi-supervised estimator achieves lower asymptotic variance than

supervised estimator.

Numerical studies:
◮ When linear decision model is correct, unlabeled data does not improve efficiency.
◮ When misspecified, semi-supervised estimator significantly improves performance.
◮ Remains robust with increasing covariate dimension p; outperforms fully nonparametric methods

and KRLS-based estimators.

Our method mitigates the curse of dimensionality, and maintains robustness and efficiency in

multi-dimensions.
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Thank you for listening.

More details can be referred to “Li, X., Zhang, S., and Zhou, Y. (2025). Semisupervised D-Learning

for Optimal Individualized Treatment Regimes. Stat, 14(2), e70063."
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